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Abstract. Sequence alignment is a central problem in bioinformatics.
The classical dynamic programming algorithm aligns two sequences by
optimizing over possible insertions, deletions and substitution. However,
other evolutionary events can be observed, such as inversions, tandem
duplications or moves (transpositions). It has been established that the
extension of the problem to move operations is NP-complete. Previous
work has shown that an extension restricted to non-overlapping inver-
sions can be solved in O(n3) with a restricted scoring scheme. In this
paper, we show that the alignment problem extended to non-overlapping
moves can be solved in O(n5) for general scoring schemes, O(n4 log n)
for concave scoring schemes and O(n4) for restricted scoring schemes.
Furthermore, we show that the alignment problem extended to non-
overlapping moves, inversions and tandem duplications can be solved
with the same time complexities. Finally, an example of an alignment
with non-overlapping moves is provided.

1 Introduction

In computational biology, alignments are usually performed to identify the char-
acters that have common ancestry. More abstractly, alignments can also be rep-
resented as edit sequences that transform one sequence into the other under
operations that model the evolutionary process. Hence, the problem of aligning
two sequences is to find the most likely edit sequence, or equivalently, under an
appropriate scoring scheme, the highest scoring edit sequence.

Historically, the only edit operations allowed were insertions, deletions and
substitutions of characters, which we refer to as standard edit operations. The
computation of the optimal alignment with respect to standard edit operations
is well understood [1], and commonly used. But in some cases, standard edit
operations are not sufficient to accurately model gene evolution. To take into
account observed phenomena such as inversions, duplications or moves (intra-
genic transpositions) of blocks of sequences [2], the set of edit operations must
be extended correspondingly. Such extensions have been studied in the past and
a number of them turned out to be hard [3]. In particular an extension to gen-
eral move operations was shown to be NP-complete [4]. For the simple greedy
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algorithm presented in [4] it was shown by [5] that O(n0.69) is an upper bound
for the approximation factor. An efficient O(log∗ n logn) factor approximation
algorithm for the general problem is presented in [6].

A number of results for the extension of the standard alignment including
block inversions have been achieved. It is shown in [7] that sorting by reversals
is NP-hard, but the complexity of alignment with inversions is still unknown. A
restricted problem of non-overlapping inversions was proposed by [8] who found
an O(n6) algorithm. This result was then further improved by [9,10,11,12] where
[12] obtained an O(n3) algorithm for a restricted scoring scheme.

In this paper, we show that the alignment problem extended with non-
overlapping moves and non-overlapping tandem duplications can be solved ex-
actly in polynomial time, and provide algorithms with time complexity of O(n5)
for general scoring schemes, O(n4 logn) for concave scoring schemes and O(n4)
for restricted scoring schemes.

Since the probability that k independent and uniformly distributed moves
be non-overlapping decreases very rapidly1, this restriction is only of practical
interest for small k, that is, if such events are very rare. Convincing evidence that
this is indeed the case can be found in [13]. They show that protein domain order
is highly conserved during evolution. It is established in [13] that most domains
cooccur with only zero, one or two domain families. Since a move operation of
the more elaborate type such as ABCD → ACBD immediately implies that
B cooccurs with three other domains, we conclude that move operations have
to be rare. Furthermore, exon shuffling is highly correlated to domain shuffling
[14,15,16] and hence cannot lead to a large amount of move operations. Finally, a
number of move operations can be found in the literature [17,18]. As for tandem
duplication events, articles on domain shuffling reveal that the most abundant
block edit operations are tandem duplications where the duplicate stays next to
the original [19,20].

In the next section, we present a rigorous definition of the two alignment
problems solved here: an extension to non-overlapping moves and an extension
to non-overlapping moves, inversions and tandem duplications. Then, we provide
solutions to both problems. The last section presents the experimental results
using the extension to non-overlapping moves.

2 Definition of the Problems and Preliminaries

2.1 Notation and Definitions

In the following, we will denote the two strings to be aligned with S = s1 . . . sn

and T = t1 . . . tm where |S| = n and |T | = m. The i-th character of S is S[i]
and S[i..j] = si+1 . . . sj (note the indices). Thus, if j ≤ i, S[i..j] = λ. By this
definition, S[i..j] and S[j..k] are disjoint. S = sn . . . s1 denotes the reverse of S
and S[i..j] = S[n − j..n − i] is the reverse of a substring, the substring of the
reverse respectively (note the extension of the bar). Let us denote the score of

1 For long sequences, this probability converges to 1
(2k−1)!!

= 1
1·3·5···2k−1

.
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S1 S2,1 S2,2 S3 S4,1 S4,2 S6,1 S6,2S

T

λ

T1 T2,1 T2,2 T3 T4,1 T4,2 T5 T6,1 T6,2

Fig. 1. Example of a non-overlapping move alignment of S with T

the standard alignment of S with T with δ(S, T ). The score for substituting a
character a with character b is denoted by an entry in the scoring matrix σ(a, b).
To simplify the definition of the alignment problems we introduce the concept
of d-decompositions:

Definition 1. Let a d-decomposition of a string S be a decomposition of S in
d substrings such that the concatenation of all the substrings is equal to S. E.g.
S = S1 · · ·Sd. Let Md(S) be the set of all d-decompositions of S.

Note that Si denotes a substring of a d-decomposition while si denotes a char-
acter. Let us further define the cyclic string to string comparison problem as
introduced by [21]:

Definition 2. The cyclic string comparison problem is to find the 2-decomposition
S1S2 ∈ M2(S) and T1T2 ∈ M2(T ) such that the score δ(S1, T2) + δ(S2, T1) is
maximal. The optimal score is denoted by δc(S, T ).

Due to the symmetry of the problem there exists always a two decomposition of
S = S1S2 such that δc(S, T ) = δ(S2S1, T ) as proven by [21].

Finally, we assume that the reader is familiar with the concept of edit graphs
as defined for instance in [22] or [23].

2.2 Definition of Alignment with Non-overlapping Moves

Using d-decompositions and the cyclic string to string comparison problem we
can now define the alignment with non-overlapping moves as follows.

Definition 3. The problem of aligning S and T with non-overlapping moves is
to find d ∈ N and d-decompositions of S and T such that the score∑d

i=1 max{δ(Si, Ti), δc(Si, Ti)+σc(lSi1)+σc(lSi2)+σc(lTi1)+σc(lTi2)} is maximal
for all d ∈ N, S1 . . . Sd ∈ Md(S) and T1 . . . Td ∈ Md(T ). Where lSi1 , lSi2 , lTi1 and
lTi2 are the lengths of the blocks involved in the move operation and σc(l) is a
penalty function for move operations. The optimal score is denoted by δm(S, T ).

Note that substrings Si, Ti may be empty. However, a substring needs to have
a length of at least 2 to contain a move. In other words, we align d pairs of
substrings of S and T and allow for each aligned pair of substrings at most one
swap of a prefix with a suffix as defined by the cyclic string comparison problem.
σc(lS1)+σc(lS2)+σc(lT1)+σc(lT2) is a penalty function for such a move operation
and depends on the lengths of the four substrings involved in the move operation.
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This decomposition in a sum will be required in the algorithm. An example of a
non-overlapping move alignment is shown in Fig. 1. We now introduce different
scoring schemes that will influence the time complexity of the results.

Definition 4. General scoring scheme: the standard alignment of substrings is
done with affine gap penalties, σc(l) is an arbitrary function and the scoring
matrix σ(a, b) is arbitrary. Concave scoring scheme: the standard alignment of
substrings is done with constant indel penalties, σc(l) is a concave function and
the scoring matrix σ(a, b) is arbitrary. Restricted scoring scheme: the standard
alignment of substrings is done with constant indel penalties and σc(l) is a con-
stant. The scoring matrix σ(a, b) is selected such that the number of distinct
values of DIST [i, j] − DIST [i, j − 1] is bounded by a constant ψ. For more
details on the restricted scoring scheme, we refer to [24].

2.3 Definition of Alignment with Non-overlapping Moves,
Inversions and Tandem-Duplications

In favor of simplicity, we assume constant indel penalties and constant penalties
for block operations in the treatment of this problem. However, the scoring
schemes of section 2.2 could be used here as well.

Definition 5. The problem of aligning S and T with non-overlapping moves, re-
versals and tandem duplications is to find d ∈ N and d-decompositions of S and T
such that the score

∑d
i=1 max{δ(Si, Ti), δc(Si, Ti)+σc, δd(Si, Ti)+σd, δr(Si, Ti)+

σr} is maximal for all d ∈ N, S1 . . . Sd ∈ Md(S) and T1 . . . Td ∈ Md(T ), where
δd(A,B) = max{δ(AA,B), δ(A,BB)} and δr(A,B) = δ(A,B). Where σc, σd, σr

are penalties for move operations, duplications or reversals respectively. The op-
timal score is denoted by δdrm(S, T ).

2.4 Other Preliminaries

The notion of DIST [i, j] arrays as used in [24,25] can be defined as follows.

Definition 6. Let DISTS,T [i, j], 0 ≤ i ≤ j ≤ m denote the score of the optimal
alignment of T [i..j] with S.

Let us further introduce input vectors I, output vectors O and a matrix OUT .

Definition 7. Let OUTS,T [i, j] = I[i]+DISTS,T [i, j]+σc(j−i), 0 ≤ i ≤ j ≤ m.
Then I is an arbitrary vector called input vector and O[j] = maxiOUT [i, j] is
called output vector containing all the column maxima of OUT .

Lemma 1. DISTS,T [i, j] arrays are inverse monge arrays.

The following lemma will become useful in the selection of the parameters.

Lemma 2. If f(l) is concave then fl(j′, j) := f(j − j′), 0 ≤ j′ ≤ m, 0 ≤ j ≤ m
is inverse Monge.
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A proof of these lemmas can be found with the definition of inverse Monge in
the Appendix.

Corollary 1. OUTS,T [i, j] = DISTS,T [i, j] + f(j − i) + I[i] is inverse Monge
for f concave and constant indel penalties.

Proof. Due to lemma 1 DISTS,T arrays with constant indel penalties are inverse
Monge. The rest follows from definition 8 and lemma 2 (in Appendix ).

Using our observations and the results from [24,25], we can conclude with the fol-
lowing results: (i) For arbitrary penalty functions σc and affine gap penalties as in
the general scoring scheme, we can compute DISTS[0..l],T from DISTS[0..l−1],T

in O(m2) as indicated in the Appendix. Then we can trivially compute the out-
put vector O as in definition 7 in O(m2) time by inspecting all entries. (ii)
For concave functions σc and constant indel penalties as in the concave scoring
scheme, we can compute a representation of DISTS[0..l],T from DISTS[0..l−1],T

in O(m logm) time using the data structure of [25]. Then since OUT is inverse
Monge, we can compute the output vector O by applying the algorithm of [26]
for searching all column maxima in a Monge array to OUT . This algorithm
will access O(m) entries of the array and hence the computation of O will take
O(m logm) time since we can access an entry of DIST in the data structure of
[25] in O(logm) time. (iii) For constant functions σc, constant indel penalties
and a restricted scoring matrix as in the restricted scoring scheme, we can com-
pute a representation of DISTS[0..l],T from DISTS[0..l−1],T in O(m) time due to
section 6 of [25] and then compute the output vector O using the algorithm of
[24] in O(m) time.

Note that the O(m logm) and O(m) results rely heavily on the fact that
DIST arrays are Monge. Since this is not true for affine gap penalties these
results cannot be easily extended to affine gap penalties.

3 Algorithms

3.1 Alignment with Non-overlapping Moves

Let SCOS,T [i, j] be the score of the optimal alignment of S[0..i] and T [0..j] with
non-overlapping moves. Then the following recurrence relation and initialization
of the table will lead to a dynamic programming solution for the problem.

Base Case: SCOS,T [i, 0] = i · σI and SCOS,T [0, j] = j · σI

Recurrence: SCOS,T [i, j] = max

⎧
⎪⎪⎨

⎪⎪⎩

SCOS,T [i, j − 1] + σI

SCOS,T [i− 1, j − 1] + σ(S[i], T [j])
SCOS,T [i− 1, j] + σI

MOV E
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where

MOV E = max
0≤i′<i,0≤j′<j

{ SCOS,T [i′, j′] + δc(S[i′..i], T [j′..j]) +

σc(lSd1) + σc(lSd2) + σc(lTd1) + σc(lTd2)}
Proof. Let us consider an optimal non-overlapping move alignment of S[0..i]
with T [0..j]. Let Sd and Td be the last substrings of the optimal d-composition
of S[0..i] and T [0..j]. Then there are two cases: (1) Sd and Td are aligned using the
cyclic string comparison or (2) Sd and Td are aligned by the standard alignment.
In case (1), we know that SCOS,T [i, j] = SCOS,T [i′, j′] + δc(Sd, Td) which is
considered in MOV E. In case (2), we are in the usual standard alignment cases.
Hence, we consider all the cases and therefore find the optimal solution.

With the goal of economizing the computation of the table let us rewrite MOV E
as

max
0 ≤ i′ < i′′ < i
0 ≤ j′ < j′′ < j

{SCOS,T [i′, j′] +DISTS[i′′..i],T [j′, j′′] + σc(j′′ − j′) + σc(i− i′′)

+DISTS[i′..i′′],T [j′′, j] + σc(j − j′′) + σc(i′′ − i′)}.
To compute MOV E for a given i′ and i′′ we can first maximize over j′

and then over j′′. That is, we can first compute the output row of the first
DISTS[i′′..i],T array and then, given that output, compute the output of the
second DISTS[i′..i′′],T array. This leads to the following definitions (illustrated
in Fig. 2).

O1[j′′] = max
0≤j′<j′′

SCOS,T [i′, j′]+DISTS[i′′..i],T [j′, j′′]+σc(j′′−j′)+σc(i−i′′) (1)

O2[j] = max
0≤j′′<j

O1[j′′] +DISTS[i′..i′′],T [j′′, j] + σc(j − j′′) + σc(i′′ − i′) (2)

Given DISTS[i′′..i],T [j′, j′′] and DISTS[i′..i′′],T [j′′, j], O1[j′′] and O2[j] can be
computed efficiently using the results from section 2.4 since both of them are
output vectors as in definition 7.

DP MOVE
1: for all i, j such that 0 ≤ i ≤ n, 0 ≤ j ≤ m do
2: {base case}
3: SCO[i, 0] := i · σI

4: SCO[0, j] := j · σI

5: SCO[i, j] := −∞ if i �= 0, j �= 0
6: end for
7: for i from 0 to n do
8: if i ≥ 1 then
9: for j from 1 to m do

10: {standard alignment recurrence}
11: SCO[i, j] := max{SCO[i, j], SCO[i − 1, j] + σI , SCO[i, j − 1] + σI ,

SCO[i− 1, j − 1] + σ(S[i], T [j])}
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n

0 m
j′ j′′ j

i

k

l

DISTS[k..l],T [j′, j′′] DISTS[i..k],T [j′′, j]

Fig. 2. An illustration of the computation of a move operation in DP MOVE. Since the
scores are additive: SCO[l, j] = SCO[i, j′] + DISTS[k..l],T [j′, j′′] + DISTS[i..k],T [j′′, j].
In DP MOVE this is maximized for all i < k < l, j′ < j′′ < j.

12: end for
13: end if
14: for k from i to n do
15: {move operations}
16: DISTS[i..k],T := calcDist(DISTS[i..k−1],T )
17: for l from k to n do
18: DISTS[k..l],T := calcDist(DISTS[k..l−1],T )
19: O1 := calcOutput(OUT [j′, j′′] = SCO[i, j′] + DISTS[k..l],T [j′, j′′] +

σc(j′′ − j′) + σc(l − k))
20: O2 := calcOutput(OUT [j′′, j] = O1[j′′] + DISTS[i..k][j′′, j] + σc(j −

j′′) + σc(k − i))
21: for j from 0 to m do
22: SCO[l, j] := max{SCO[l, j], O2[j]}
23: end for
24: end for
25: end for
26: end for

Where calcDist(DISTS[0..l−1],T ) computesDISTS[0..l],T fromDISTS[0..l−1],T

and calcOutput(OUT [i, j]) computes O as in definition 7.
Correctness. To show the correctness of the algorithm it suffices to show that

we process all edges in the edit graph and whenever we process an edge (u, v) ∈ E
we have completed the computation of the score of u and any of its predecessors
in topological order [22]. The computation of the score of a node u is completed iff
all the incoming edges of u have been processed. This can be proven by induction.
In our edit graph, the only edges are either due to the standard alignment, or
due to move operations, as can be seen in the recurrence. Assuming that when
computing the i-th row of SCO, all edges due to move operations starting in a
row i′ < i have already been processed and the computation of any node (i′, j)
with i′ < i has been completed, we can see that the processing of the edges
due to the standard alignment recurrence ending in the i-th row as done on line
9 to 12 is legitimate. After having processed those edges, we have completed
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the computation of all edges ending on any node in the i-th row and hence can
compute any edge due to move operations starting on that row which is done
on line 14 to 24. We compute all such edges. Consequently, when we advance to
the computation of row i+ 1 the assumption is again true.

Using the results from section 2.4 we can analyze the runtime of the algorithm
and conclude with the following theorem.

Theorem 1. The problem of aligning S and T , |S| = n, |T | = m, with non-
overlapping moves can be solved in O(n3m2) time and O(nm + m2) space for
general scoring schemes, in O(n3m logm) time and O(nm+m2) space for con-
cave scoring schemes and in O(n3m) time and O(nm) space for restricted scoring
schemes.

3.2 Alignment with Non-overlapping Moves, Inversions, and
Tandem Duplications

The dynamic programming recurrence of non-overlapping move operations ex-
tends nicely to this problem.

Base Case: SCOS,T [i, 0] = i · σI and SCOS,T [0, j] = j · σI

Recurrence: SCOS,T [i, j] = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

SCOS,T [i, j − 1] + σI

SCOS,T [i− 1, j − 1] + σ(S[i], T [j])
SCOS,T [i− 1, j] + σI

MOV E + σc

S DUPLICATE + σd

T DUPLICATE + σd

REV ERSE + σr

where

MOV E = max
0≤i′<i,0≤j′<j

{SCOS,T [i′, j′] + δc(S[i′..i], T [j′..j])}
S DUPLICATE = max

0≤i′<i,0≤j′<j′′<j
{SCOS,T [i′, j′] + δ(S[i′..i], T [j′..j′′])

+δ(S[i′..i], T [j′′..j]}
T DUPLICATE = max

0≤i′<i′′<i,0≤j′<j
{SCOS,T [i′, j′] + δ(S[i′..i′′], T [j′..j])

+δ(S[i′′..i], T [j′..j]}
REV ERSE = max

0≤i′<i,0≤j′<j
{SCOS,T [i′, j′] + δ(S[i′..i], T [j′..j])}

A proof of this recurrence is analogous to the proof for non-overlapping moves
and is omitted.

We have split tandem duplication into tandem duplication of a substring of
S and tandem duplication of a substring of T . We have already shown how
MOV E can be treated and in [11] it is shown how to handle REV ERSE.
S DUPLICATE can be done as follows. We calculate DISTS[i..k]. Then, we
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Fig. 3. An illustration on how duplications are treated

first use SCOS,T [i, j′] as input vector for DISTS[i..k] to get O1[j′] and then use
O1[j′] as input for DISTS[i..k] to get O2[j]. T DUPLICATE can be computed
by computing the output vector of DISTS[i..k],T [j′, j] + DISTS[k..l],T [j′, j] for
the input vector SCOS,T [i, j′]. Note, that this array is well defined and is again
inverse Monge because it is a sum of two inverse Monge arrays. Using these
observations which are illustrated in Fig. 3 we can now present our algorithm
for this problem.

DP MOVE INV DUPL

1: {initialize the table as in DP MOVE}
2: for i from 0 to n do
3: {compute REVERSE as done in [12]}
4: {compute the standard alignment recurrence as in DP MOVE}
5: {treat MOVE as done in DP MOVE}
6: for k from i to n do
7: {duplication}
8: DISTS[i..k],T := calcDist(DISTS[i..k−1],T )
9: O1 := calcOutput(OUT [j′, j′′] = SCO[i, j′] +DISTS[i..k],T [j′, j′′])

10: O2 := calcOutput(OUT [j′′, j] = O1[j′′] +DISTS[i..k],T [j′′, j])
11: for l from k to n do
12: DISTS[k..l],T := calcDist(DISTS[k..l−1],T )
13: O := calcOutput(OUT [j′, j] = SCO[i, j′] + DISTS[i..k],T [j′, j] +

DISTS[k..l],T [j′, j])
14: for j from 0 to m do
15: SCO[l, j] := max{SCO[l, j], O[j] + σd, O2[j] + σd}
16: end for
17: end for
18: end for
19: end for

A proof of the correctness of the algorithm is analogous to the proof for
DP MOVE. This proof however reveals that it is important to process edges due
to REVERSE before the standard alignment recurrence.
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Theorem 2. The problem of aligning S and T with non-overlapping moves,
reversals and tandem duplications can be solved in O(n3m2) time and O(nm +
m2) space for general scoring schemes, in O(n3m logm) time and O(mn+m2)
space for concave scoring schemes and in O(n3m) time and O(nm) space for
restricted scoring schemes, where n = |S| and m = |T |.

4 Implementation and Experiments

We have implemented an O(n5) version of the algorithm with constant gap
penalties in C2. This implementation has proven useful for aligning sequences
of up to about 400 AA, taking a few hours to compute the alignment. We have
tested the algorithm on real data and were able to confirm a number of examples
found in [2]. In addition we run the algorithm on an example found in [18].
This alignment is shown in figure 4 and is compared with a standard alignment
obtained from Darwin [27].

DP_MOVE
Seq1: RPSTVPLP_NTQ__A_LAMA_[GTAYKGYVKVP_KPTGVK_KGWQRAYAVVCDCKLFLYDLPEGK_STQPGVIASQVLDLRDDEFAVSSVLA
Seq2: LSSADNDPEDSQHSSLLSLTQ[DSVFEGWLSVPNKQNRRRGHGWKRQYVIVSSRKIIFYNSDIDKHNTTDAVL___ILDL_SKVYHVRSVTQ

Seq1: SDVIHATRRDIPCIFRVT_ASLLG_S__PSKTSSL_L_ILTENENEKRK|GP_KPKAHQF_SIKSFPSPTQCSHCTSLMVGLIR__QGYACE
Seq2: GDVIRADAKEIPRIFQLLYAGE_GASHRPDEQSQLDVSVLHGNCNEERP|GTIVHKGHEFVHI_TYHMPTACEVCPKPLWHMFKPPAAYECK

Seq1: VCAFSCHVSCKDS_APQV_CPIPPE_QSKRP___LGVDVQ_RGI]WVGILEGLQAILHKNRLRSQVV_HVAQEAYD_S_SLPLI
Seq2: RCRNKIHKEHVDKHDPLAPCKLNHDPRSARDMLLLAATPEDQSL]WVARL__LKRI_QKSGYKAASYNNNSTDGSKISPSQSTR

DARWIN
Seq1: RPSTVPLPNTQALAMAGPKPKAHQFSIKSFPSPTQCSHCTSLMVGLIRQGYACEVCAFSCHVSCKDSAPQVCPIPPEQSKRPLGVDVQRGIG
Seq2: ____________LSSADNDPEDSQHS__SLLSLTQ________________________________________________________D

Seq1: TAYKGYVKVPKPTGVKK__GWQRAYAVVCDCKLFLY__DLPEGKSTQPGVIASQVLDLRDDEFAVSSVLASDVIHATRRDIPCIFRV_____
Seq2: SVFEGWLSVPNKQNRRRGHGWKRQYVIVSSRKIIFYNSDIDKHNTTD____AVLILDL_SKVYHVRSVTQGDVIRADAKEIPRIFQLLYAGE

Seq1: _____________________________________________________________________________________TASLLGS
Seq2: GASHRPDEQSQLDVSVLHGNCNEERPGTIVHKGHEFVHITYHMPTACEVCPKPLWHMFKPPAAYECKRCRNKIHKEHVDKHDPLAPCKLNHD

Seq1: PSKTSSLLILTENENEKRKWVGIL______EGLQAILHKNRLRSQVVHVAQEAYDSSLPLI
Seq2: PRSARDMLLLAATPEDQSLWVARLLKRIQKSGYKAASYNNN______STDGSKISPSQSTR

Fig. 4. An example found in [18]. In this figure we compare an alignment computed
with our new algorithm and an alignment done with Darwin [27]. The brackets ’[’ and
’]’ indicate the boundary of the substrings containing a move operation and ’|’ marks
the position of the split. Seq1: Q7TT49 AA 1005-1241; Seq2: Q9VXE3 AA 1112-1367.
Using the annotation of SMART we have marked the domains involved in the move
operation. Pleckstrin homology phospholipid binding domain is shown in blue, protein
kinase C-type diacylglycerol binding domain is shown in yellow.

5 Conclusions

In this paper, we have presented a number of new alignment problems extending
the notion of non-overlapping inversions to non-overlapping moves and tandem
duplications. For all of them we found algorithms that solve the problems exactly
and can be implemented to run in O(n2) space and O(n5), O(n4 logn) or O(n4)
2 Available from the authors upon request.
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time depending on the scoring scheme used. We believe that this approach may
yield new insights by finding the best alignment of two sequences, and think that
it is justifiable due to the rarity of such events in nature. Using the implemen-
tation of the O(n5) variant of the algorithm, we were able to align previously
identified cases of pairs of sequences with move operations. Furthermore, these
experiments also showed the necessity of an O(n4 logn) implementation to be
applicable to large sequences, which are more likely to contain a move.
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Appendix

Monge Properties

For a proof of lemma 1 and lemma 2 we have to define the notion of Monge
arrays [28] first:

Definition 8. A matrix M [0 . . . n; 0 . . .m] is Monge if for all i = 1 . . . n, j =
1 . . .m

M [i, j] +M [i− 1, j − 1] ≤M [i− 1, j] +M [i, j − 1]

and it is called inverse Monge if for all i = 1 . . . n, j = 1 . . .m

M [i, j] +M [i− 1, j − 1] ≥M [i− 1, j] +M [i, j − 1]
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Then the proof for lemma 2 goes as follows.

Proof

fl(j′ − 1, j − 1) + fl(j′, j) = 2f(j − j′)

≥ 2
f(j − j′ − 1) + f(j − j′ + 1)

2
= fl(j′ − 1, j) + fl(j′, j − 1)

Where the inequality follows from the definition of concave. A function f is
concave iff f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y) holds for all x, y ∈ R, t ∈ [0, 1].
In other words every point on a secant is below the function. In the proof we
used t = 1/2 as shown in Fig. 5.

f(j − j′ − 1)
f(j − j′)

f(l)

lj − j′ − 1 j − j′ j − j′ + 1

f(j − j′ + 1)

Fig. 5. For concave functions any point on a secant is below the function

Note that if any three points f(j − 1), f(j), f(j + 1), 0 < j < m are not in
concave position the resulting array will not be inverse Monge. That is, lemma
2 holds with equivalence if we restrict the definition of concave to values in
{0 . . .m+ 1} ⊆ N.

The proof for Lemma 1 is analogous to the proof in [25].

Proof The paths represented by DISTS,T [i− 1, j] and DISTS,T [i, j− 1] have to
cross properly in a vertex v as shown in figure 6. Therefore, we have

DISTS,T [i− 1, j] +DISTS,T [i, j − 1] = (a+ b) + (c+ d)
= (a+ d) + (b+ c)
≤ g + f

= DISTS,T [i, j] +DISTS,T [i− 1, j − 1]

where the inequality follows from a+d ≤ f and b+c ≤ g. Where a+d ≤ f holds
since a + d is the length of a path from (0, i− 1) to (n, j − 1) and the optimal
path of length f can only be longer and analogously b+ c ≤ g.

In figure 6 2) a counter example for affine gap penalties is given. This is a counter
example because the total number of gaps on the paths from (0, i) to (n, j − 1)
and (0, i − 1) to (n, j) is smaller than the total number of gaps on the paths
from (0, i) to (n, j) and (0, i− 1) to (n, j − 1). Hence DISTS,T arrays cannot be
monge for large initial penalties.
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(0, i − 1) (0, i)

(n, j)(n, j − 1)

v

a

b
d

c

f

g

(0, i − 1) (0, i)

(n, j)(n, j − 1)

1) 2)

Fig. 6. 1) illustrates that the path from vertex (0, i) to (n, j − 1) and the path from
vertex (0, i− 1) to (n, j) in the grid graph have to cross in a common vertex v. 2) gives
a counter example for affine gap penalties.

Extension of DIST Arrays

This simple algorithm is inspired by [25]. It is repeated here to provide an idea
on how to extend our algorithms to affine gap penalties.

For the base cases we observe that DISTS,T [i, j] = BS,T [i..j][n, j − i] in
particular for constant indel penalties DISTS[0..0],T [i, j] = (j − i) · σI and
DISTS[0..l],T [i, i] = l · σI .

By mapping the standard alignment recurrence to DIST arrays we obtain:

DISTS[0..l],T [i, j] = max

⎧
⎨

⎩

DISTS[0..l−1],T [i, j] + σI

DISTS[0..l−1],T [i, j − 1] + σ(S[l], T [j])
DISTS[0..l],T [i, j − 1] + σI

Therefore, we can compute DISTS[0..l],T givenDISTS[0..l−1],T in O(m2) time.
This recurrence can be extended to include affine gap penalties by mapping the
more complicated recurrence for the standard alignment with affine gap penalties
to DIST arrays.
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