
Chapter 9

Inferring Orthology and Paralogy

Adrian M. Altenhoff and Christophe Dessimoz

Abstract

The distinction between orthologs and paralogs, genes that started diverging by speciation versus duplica-
tion, is relevant in a wide range of contexts, most notably phylogenetic tree inference and protein function
annotation. In this chapter, we provide an overview of the methods used to infer orthology and paralogy.
We survey both graph-based approaches (and their various grouping strategies) and tree-based approaches,
which solve the more general problem of gene/species tree reconciliation. We discuss conceptual differ-
ences among the various orthology inference methods and databases, and examine the difficult issue of
verifying and benchmarking orthology predictions. Finally, we review typical applications of orthologous
genes, groups, and reconciled trees and conclude with thoughts on future methodological developments.
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1. Introduction

The study of genetic material almost always starts with identifying,
within or across species, homologous regions—regions of common
ancestry. As we have seen in previous chapters, this can be done at
the level of genome segments (Chapter 8, this volume; ref. 1),
genes (Chapter 6, this volume; ref. 2), or even down to single
residues, in sequence alignments (Chapter 7, this volume; ref. 3).
Here, we focus on genes as evolutionary and functional units. The
central premise of this chapter is that it is useful to distinguish
between two classes of homologous genes: orthologs, which are
pairs of genes that started diverging via evolutionary speciation,
and paralogs, which are pairs of genes that started diverging via
gene duplication (4) (Box 1). Originally, the terms and their defi-
nition were proposed by Walter M. Fitch in the context of species
phylogeny inference, i.e., the reconstruction of the tree of life. He
stated, “Phylogenies require orthologous, not paralogous, genes”
(4). Indeed, since orthologs arise by speciation, any set of genes in
which every pair is orthologous has by definition the same
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evolutionary history as the underlying species. These days, how-
ever, the most frequent motivation for the orthology/paralogy
distinction is to study and predict gene function: it is generally
believed that orthologs—because they were the same gene in the
last common ancestor of the species involved—are likely to have
similar biological function. By contrast, paralogs—because they
result from duplicated genes that have been retained, at least partly,
over the course of evolution—are believed to often differ in

Box 1
Terminology

S1

S2

D1

S2

x1 y1 x2 y2 z1

Homology is a relation between a pair of genes that share a common ancestor. All pairs of
genes in the figure above are homologous to each other.

Orthology is a relation defined over a pair of homologous genes, where the two genes have
emerged through a speciation event (4). Example pairs of orthologs are (x1, y1) or (x2, z1).
Orthologs can be further subclassified into one-to-one, one-to-many, many-to-one and
many-to-many orthologs. The qualifiers one and many indicate for each of the two
involved genes whether they underwent an additional duplication after the speciation
between the two genomes. Hence, the gene pair (x1, y1) is an example of a one-to-one
orthologous pair, whereas (x2, z1) is a many-to-one ortholog relation.

Paralogy is a relation defined over a pair of homologous genes that have emerged through
a gene duplication, e.g., (x1, x2) or (x1, y2).

In-paralogy is a relation defined over a triplet. It involves a pair of genes and a speciation
event of reference. A gene pair is an in-paralog if they are paralogs and duplicated after the
speciation event of reference. The pair (x1, y2) are in-paralogs with respect to the
speciation event S1.

Out-paralogy is also a relation defined over a pair of genes and a speciation event of
reference. This pair are out-paralogs if the duplication event through which they are
related to each other predates the speciation event of reference. Hence, the pair (x1, y2) are
out-paralogs with respect to the speciation event S2.

Co-orthology is a relation defined over three genes, where two of them are in-paralogs with
respect to the speciation event associated to the third gene. The two in-paralogous genes
are said to be co-orthologous to the third (out-group) gene. Thus, x1 and y2 are co-
orthologs with respect to z1.
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function. Consequently, orthologs are of interest to infer function
computationally while paralogs are commonly used to study func-
tion innovation.

In this chapter, we first review the main methods used to infer
orthology and paralogy. We then discuss the problem of bench-
marking orthology inference. In the last main section, we focus on
various applications of orthology and paralogy.

2. Inferring
Orthology

Most orthology inference methods can be classified into two major
types: graph-based methods and tree-based methods (5). Methods
of the first type rely on graphs with genes (or proteins) as nodes and
evolutionary relationships as edge. They infer whether these edges
represent orthology or paralogy, and build clusters of genes on the
basis of the graph. Methods of the second type are based on gene/
species tree reconciliation, which is the process of annotating all
splits of a given gene tree as duplication or speciation, given the
phylogeny of the relevant species. From the reconciled tree, it is
trivial to derive all pairs of orthologous and paralogous genes.
All pairs of genes which coalesce in a speciation node are orthologs,
and paralogs if they split at a duplication node. In this section, we
present the concepts and methods associated with the two types,
and discuss the advantages, limitations, and challenges associated
with them.

2.1. Graph-Based

Methods

Graph-based approaches were originally motivated by the avail-
ability of complete genome sequences and the need for efficient
methods to detect orthology. They typically run in two phases:
a graph construction phase, in which pairs of orthologous genes
are inferred (implicitly or explicitly) and connected by edges, and a
clustering phase, in which groups of orthologous genes are con-
structed based on the structure of the graph.

2.1.1. Graph-Construction

Phase: Orthology Inference

In its most basic form, the graph-construction phase identifies
orthologous genes by considering pairs of genomes at a time. The
main idea is that between any given two genomes, the orthologs tend
to be the homologs that diverged least. Why? Because, assuming
that speciation and duplication are the only types of branching
events, the orthologs branched by definition at the latest possible
time point—the speciation between the two genomes in question.
Therefore, using sequence similarity score as surrogate measure of
closeness, the basic approach consists in identifying the corres-
ponding ortholog of each gene through its genome-wide best
hit (BeT), its highest scoring match in the other genome (6).
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To make the inference symmetric (as orthology is a symmetric rela-
tion), it is usually required that BeTs are reciprocal, i.e., that orthol-
ogy is inferred for a pair of gene g1, g2 if and only if g2 is the BeTof g1
and g1 is the BeT of g2 (7). This symmetric variant, referred to as
bidirectional best hit (BBH), has also themerit of beingmore robust
against a possible gene loss in one of the two lineages (Fig. 1).

Inferring orthology from BBH is computationally efficient
because each genome pair can be processed independently, and
high-scoring alignments can be computed efficiently using dynamic
programming (8) or heuristics, such as BLAST (9). Overall, the time
complexity scales quadratically in terms of the total number of genes.
Furthermore, the implementation of this kind of algorithm is simple.

However, orthology inference by BBH has several limitations,
which motivated the development of various improvements
(Table 1).

Allowing for More Than

One Ortholog

Some genes can have more than one orthologous counterpart in a
given genome. This happens whenever a gene undergoes duplica-
tion after the speciation of the two genomes in question. Since
BBH only picks the BeT, it only captures part of the orthologous
relations (Fig. 1). The existence of multiple orthologous counter-
parts is often referred to as one-to-many or many-to-many

S1

a b

S2 S2

Fig. 1. (a) Simple evolutionary scenario of a gene family with two speciation events
(S1 and S2) and one duplication event (star). The type of events completely and unambig-
uously defines all pairs of orthologs and paralogs: the frog gene is orthologous to all other
genes (it coalesces at S1). The red and blue genes are orthologs between themselves
(they coalesce at S2), but paralogs between each other (they coalesce at star). (b) The
corresponding orthology graph. The genes are represented here by vertices, and orthology
relationships by edges. The frog gene forms one-to-many orthology with both the human
and dog genes because it is orthologous to more than one sequence in each of these
organisms. In such cases, the bidirectional best-hit approach only recovers one of the
relations (the highest scoring one). Note that in contrary to BBH the nonsymmetric BeTs
approach would, in the situation of a lost blue human gene, infer an incorrect orthologous
relation between the blue dog and red human gene.
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orthology, depending whether duplication took place in one or
both lineages. To designate the copies resulting from such duplica-
tions occurring after a speciation of reference, Remm et al. (10)
coined the term in-paralogs and introduced a method called Inpar-
anoid that improves upon BBH by potentially identifying all pairs
of many-to-many orthologs. In brief, their algorithm identifies all
paralogs within a species that are evolutionarily closer (more simi-
lar) to each other than to the BBH gene in the other genome. This
results in two sets of in-paralogs—one for each species—whose
Cartesian product gives all orthologous relations. Alternatively, it
is possible to identify many-to-many orthology by relaxing the
notion of “BeT” to “group of BeTs.” This can be implemented
using a score tolerance threshold or a confidence interval around
the BBH (11, 12).

Evolutionary Distances Instead of using sequence similarity as a surrogate for evolutionary
distance to identify the closest gene(s), Wall et al. (13) proposed
to use direct and proper maximum likelihood estimates of the
evolutionary distance between pairs of sequences. Indeed, previous
studies have shown that the highest scoring alignment is often not
the nearest phylogenetic neighbor (14). Building upon this work,
Roth et al. (15) showed how statistical uncertainties in the distance
estimation can be incorporated into the inference strategy.

Differential Gene Losses As discussed above, one of the advantages of BBH over BeT is that
by virtue of the bidirectional requirement the former is more robust
to gene losses in one of the two lineages. But if gene losses occurred
along both lineages, it can happen that a pair of genes mutually
closest to one another are in fact paralogs, simply because both
their corresponding orthologs were lost—a situation referred to as
“differential gene losses.” Dessimoz et al. (16) presented a way to
detect some of these cases by looking for a third species in which the
corresponding orthologs have not been lost and thus can act as
witnesses of nonorthology.

2.1.2. Clustering Phase:

From Pairs to Groups

The graph-construction phase yields orthologous relationships
between pairs of genes. But this is often not sufficient. Concep-
tually, information obtained from multiple genes or organisms is
often more powerful than that obtained from pairwise comparisons
only. In particular, as the use of a third genome as potential witness
of nonorthology suggests, a more global view can allow identi-
fication and correction of inconsistent/spurious predictions. Prac-
tically, it is more intuitive and convenient to work with groups of
genes than with a list of gene pairs. Therefore, it is often desirable to
cluster orthologous genes into groups.

Tatusov et al. (6) introduced the concept of clusters of ortho-
logous groups (COGs). COGs are computed by using triangles
(triplets of genes connected to each other) as seeds, and then
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merging triangles which share a common face, until no more
triangle can be added. This clustering can be computed relatively
efficient in time O(n3), where n is the number of genomes analyzed
(17). The stated objective of this clustering procedure is to group
genes that have diverged from a single gene in the last common
ancestor of the species represented (6). Practically, the COGs have
been found to be useful by many, most notably, to categorize
prokaryotic genes into broad functional categories.

A different clustering approach was adopted by OrthoMCL,
another well-established graph-based orthology inference method
(18). There, groups of orthologs are identified by Markov Cluster-
ing (19). In essence, the method consists in simulating a random
walk on the orthology graph, where the edges are weighted accord-
ing to similarity scores. The Markov Clustering process gives rise to
probabilities that two genes belong to the same cluster. The graph
is then partitioned according to these probabilities and members of
each partition form an orthologous group. These groups contain
orthologs and “recent” paralogous genes, where the recency of the
paralogs can be somewhat controlled through the parameters of the
clustering process.

A third grouping strategy consists in building groups by iden-
tifying fully connected subgraphs (called “cliques” in graph theory)
(11). This approach has the merits of straightforward interpretation
(groups of genes which are all orthologous to one another) and
high confidence in terms of orthology within the resulting groups
due to the high consistency required to form a fully connected
subgraph. But it has the drawbacks of being hard to compute
(Clique finding belongs to the NP-complete class of problems,
for which no polynomial-time algorithm is known) and being
excessively conservative for many applications.

As emerges from these various strategies, there is more than
one way orthologous groups can be defined, each with different
implications in terms of group properties and applications (20).
In fact, there is an inherent trade-off in partitioning the orthology
graph into clusters of genes because orthology is a nontransitive
relation: if genes A and B are orthologs and genes B and C are
orthologs, genes A and C are not necessarily orthologs, e.g., con-
sider in Fig. 1 the blue human gene, the frog gene, and the red dog
gene. Therefore, if groups are defined as sets of genes in which all
pairs of genes are orthologs (as with OMA groups), it is not
possible to partition A, B, and C into groups capturing all ortho-
logous relations while leaving out all paralogous relations.

More inclusive grouping strategies necessarily lead to orthologs
and paralogs within the same group. Nevertheless, it can be possi-
ble to control the nature of the paralogs included. For instance, as
seen above, OrthoMCL attempts at including only “recent” para-
logs in its groups. This idea can be specified more precisely by
defining groups with respect to a particular speciation event of

9 Inferring Orthology and Paralogy 265



interest, e.g., the base of the mammals. Such hierarchical groups are
expected to include orthologs and in-paralogs with respect to the
reference speciation—in our example, all copies that have des-
cended from a single common ancestor gene in the last mammalian
common ancestor. EggNOG (21) and OrthoDB (22), for example,
both implement this concept by applying the COG clustering
method for various taxonomic ranges. Another method, COCO-
CL, identifies hierarchical orthologous groups recursively using
correlations of similarity scores among homologous genes (23)
and, interestingly, without relying on a species tree. By capturing
part of the gene tree structure in the group hierarchies, these
methods try in some way to bridge the gap between graph-based
and tree-based orthology inference approaches. We now turn our
attention to the latter.

2.2. Tree-Based

Methods

At their core, tree-based orthology inference methods seek to
reconcile gene and species trees. Reconciliation is needed because
in most cases gene and species trees have different topologies due to
evolutionary events acting specifically on genes, such as duplica-
tions, losses, lateral transfers, or incomplete lineage sorting (24).
Goodman et al. (25) pioneered research to resolve these incon-
gruences. They showed how the incongruences can be explained in
terms of speciation, duplication, and loss events on the gene tree
(Fig. 2), and provided an algorithm to infer such events. Once all
branchings of the gene tree have been inferred as speciation or
duplication event, it is trivial to establish whether a pair of genes
is orthologous or paralogous, based on the type of the branching
where they coalesce. Therefore, orthology/paralogy inference can
be reduced to tree reconciliation.

Most tree reconciliation methods rely on a parsimony criterion:
the most likely reconciliation is the one which requires the least
number of gene duplications and losses. This makes it possible to
compute reconciliation efficiently, and is tenable as long as duplica-
tion and loss events are rare compared to speciation events. In their
seminal article, Goodman et al. (25) had already devised their
reconciliation algorithm under a parsimony strategy. In the
subsequent years, the problem was formalized in terms of a map
function between the gene and species trees (26), whose cost was
conjectured (27), and later proved (28, 29) to coincide with the
number of gene duplication and losses. With the proofs came
highly efficient algorithms, either in terms of asymptotic time com-
plexity with an O(n) algorithm (28) or in terms of actual runtime
on typical problem sizes (30). With these near-optimal solutions,
one could think that the tree reconciliation problem has long been
solved. As we shall see in the rest of this section, however, the
original formulation of the tree reconciliation problem has several
limitations in practice, which have stimulated the development of
various refinements to overcome them (Table 2).
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2.2.1. Unresolved

Species Tree

A first problem ignored by most early reconciliation algorithms lies
in the uncertainty often associated with the species tree, which
these methods assume as correct and heavily rely upon.

One way of dealing with the uncertainties is to treat unresolved
parts of the species tree as multifurcating nodes (also known as
soft polytomies). By doing so, the reconciliation algorithm is not
forced to choose for a specific type of evolutionary event in ambig-
uous regions of the tree. This approach is, for instance, imple-
mented in TreeBeST (31) and used in the Ensembl Compara
project (32).

Alternatively, van der Heijden et al. (33) demonstrated that it is
often possible to infer speciation and duplication events on a gene
tree without knowledge of the species tree. Their approach, which
they call species-overlap, identifies for a given split the species repre-
sented in the two subtrees induced by the split. If at least one species
has genes in both subtrees, a duplication event is inferred; else, a
speciation event is inferred. In fact, this approach is a special case
of soft polytomies, where all internal nodes have been collapsed.

Species Tree

Reconciled Tree
(Simple Representation)

Reconciled Tree
(Full Representation)

Gene Tree

Duplication

Gene loss

Speciation

Fig. 2. Schematic example of the gene/species tree reconciliation. The gene tree and
species tree are not compatible. Reconciliation methods resolve the incongruence
between the two by inferring speciation, duplication, and losses events on the gene
tree. The reconciled tree indicates the most parsimonious history of this gene, con-
strained to the species tree. The simple representation (bottom right) suggests that the
human and frog genes are orthologs, and that they are both paralogous to the dog gene.
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Thus, the only information needed for this approach is a rooted
gene tree. Since then, this approach has been adopted in other
projects, such as PhylomeDB (34). A different, but conceptually
related, idea was proposed by Poptsova and Gogarten (35): their
BranchClustmethod delineates COGs-like clusters in gene trees by
identifying subtrees consisting of sequences represented in most
species.

2.2.2. Rooting The classical reconciliation formulation requires both gene and
species trees to be rooted. But most models of sequence evolution
are time reversible and thus do not allow to infer the rooting of the
reconstructed gene tree. Hallett and Lagergren (36) proposed to
root a gene tree so that it minimizes the number of duplication
events. Thus, this method uses the parsimony principle for both
rooting and reconciliation. For cases of multiple optimal rootings,
Zmasek and Eddy (37) suggested in the software package RIO to
break ties by selecting the tree that minimizes the tree height. As an
alternative, Berglund-Sonnhammer et al. (38) suggested to use the
rooting which minimizes the number of gene losses.

Table 2
Overview of gene/species tree reconciliation methods and their main properties

Method Species treea Rootingb
Gene tree
uncertaintyc Frameworkd

Available
Algo/DB Reference

SDI Fully resolved n.a. None MP X/– (30)

RIO Fully resolved min dupl Bootstrap MP –/X5 (37)

OrthoStrapper Fully resolved min dupl Bootstrap MP X/– (39)

GSR Fully resolved n.a. n.a. Probabilistic X/– (54, 57)

HOGENOM Partially resolved Min dupl Multifurcate MP X/X (50, 79)

Softparsmap Partially resolved Min dupl +
min loss

Multifurcate MP X/– (38)

Ensembl/
TreeBeST

Partially resolved Min dupl +
min loss

None MP –/X (31, 32)

LOFT Species overlap Min dupl None MP X/– (33)

PhylomeDB Species overlap Outgroup None MP –/X (34)

BranchClust Species overlap Min number
of clusters

None n.a. –/X (35)

aRequired species tree: Fully resolved, multifurcations allowed, computed from species overlap
bApproach to root gene tree (n.a. indicates that the initial rooting is assumed to be correct)
cApproach taken to handle reconstruction uncertainties of the gene tree (bootstrap: reconcile every
bootstrap sample; multifurcate: splits in the gene tree with low support are collapsed)
dUsed optimization framework (MP, maximum parsimony)
eNo longer maintained
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Another approach, proposed by Storm and Sonnhammer (39)
and implemented in Orthostrapper, is to place the root at the
“center of the tree.” The idea of this method goes back to Farris
(40) and is motivated by the concept of a molecular clock. But for
most gene families, assuming a constant rate of evolution is inap-
propriate (41, 42), and thus this approach is not used widely.

For species tree, the most common and reliable way of rooting
trees is by identifying an outgroup species. Recently, Huerta-Cepas
et al. (34) have used genes from outgroup species to root gene
trees. One main potential problem with this approach is that in
many situations it can be difficult to identify a suitable outgroup.
For example, in analysis covering all kingdoms of life, an outgroup
species may not be available or the relevant genes might have been
lost (43). A suitable outgroup needs to be close enough to allow for
reliable sequence alignment, yet it must have speciated clearly
before any other species separated. Furthermore, ancient duplica-
tions can cause outgroup species to carry ingroup genes. These
difficulties make this approach more challenging for automated
large-scale analysis (44).

2.2.3. Gene Tree

Uncertainty

Another assumption made in the original tree reconciliation prob-
lem is the (topological) correctness of the gene tree. But it has been
shown that this assumption is commonly violated often due to
finite sequence lengths, taxon sampling (45, 46), or gene evolution
model violations (47). On the other hand, techniques of expressing
uncertainties in gene tree reconstruction via support measures,
e.g., bootstrap values, have become well established. Storm and
Sonnhammer (39) and Zmasek and Eddy (37) independently sug-
gested to extend the bootstrap procedure to reconciliation, thereby
reducing the dependency of the reconciliation procedure on any
one gene tree while providing a measure of support of the inferred
speciation/duplication events. The downsides of using the boot-
strap are the high computational costs and interpretation difficul-
ties associated with it (see, e.g., 48, 49, for discussions).

Similarly to how unresolved species tree can be handled,
unresolved parts of the gene tree can also be collapsed into multi-
furcating nodes. For instance, Dufayard et al. (50) (HOGENOM)
and Berglund-Sonnhammer et al. (38) (Softparsmap) collapse
branches with low bootstrap support values.

A third way of tackling this problem consists in simultaneously
solving both the gene tree reconstruction and reconciliation pro-
blems (51). They use the parsimony criterion of minimizing the
number of duplication events to improve on the gene tree itself.
This is achieved by rearranging the local gene tree topology of
regions with low bootstrap support such that the number of dupli-
cations and losses is further reduced.
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2.2.4. Parsimony Versus

Likelihood

All the approaches mentioned so far try to minimize the number of
gene duplication events. This is generally justified by a parsimony
argument, which assumes that gene duplications and losses are rare
events. But what if this assumption is frequently violated? Little is
known about duplication and loss rates in general (52), but there is
strong evidence for historical periods with high gene duplication
occurrence rates (53) or gene families specifically prone to massive
duplications (e.g., olfactory receptor, opsins, serine/threonine
kinases, etc.).

Motivated by this reasoning, Arvestad et al. (54) introduced
the idea of a probabilistic model for tree reconciliation. They used
a Bayesian approach to estimate the posterior probabilities of a
reconciliation between a given gene and species tree using Markov
Chain Monte Carlo (MCMC) techniques. Arvestad et al. (55)
modeled gene duplication and loss events through a birth–death
process. In the subsequent years, they refined their method to
also model sequence evolution and substitution rates in a unified
framework called Gene Sequence evolution model with iid Rates
(GSR) (56, 57).

Perhaps, the biggest problem with the probabilistic approach
is that it is not clear how well the assumptions of their model (the
birth–death process with fixed parameters) relate to the true process
of gene duplication and gene loss. In a recent study, Doyon et al.
(58) have compared the maximum parsimony reconciliation trees
from 1,278 fungi gene families to the probabilistically reconciled
trees using gene birth/death rates fitted from the data. They found
that in all but two cases the maximum parsimony scenario corre-
sponds to the most probable one. This remarkably high level of
consistency indicates that in terms of the accuracy of the “best”
reconciliation there is little to gain from using a likelihood approach
over the parsimony criterion of minimizing the number of duplica-
tion events. But how this result generalizes to other datasets has yet
to be investigated.

2.3. Graph-Based

Versus Tree-Based:

Which Is Better?

Given the two fundamentally different paradigms in orthology
inference that we reviewed in this section, one can wonder which
is better. Conceptually, tree reconciliation methods have several
advantages. In terms of inference, by considering all sequences
jointly, it can also be expected that they can extract more informa-
tion from the sequences, which should translate into higher statis-
tical power. In terms of their output, reconciled gene trees provide
the user more information than pairs or groups of orthologs.
For example, the trees display the order of duplication and specia-
tion events, as well as evolutionary distances between these events.
In practice, however, these methods have the disadvantage of
having much higher computational complexity than their graph-
based counterparts. Furthermore, the two approaches are in prac-
tice often not that strictly separated. Tree-based methods often
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start with a graph-based clustering step to identify families of
homologous genes. Conversely, several hierarchical grouping algo-
rithms also rely on species trees in their inference.

Thus, it is difficult to make general statements about the rela-
tive performance of the two classes of inference methods. Instead,
we need to evaluate methods on an individual basis, based on
empirical tests. As we shall see in the next section, this is an entire
topic of its own.

3. Benchmarking
Orthology

Assessing the quality of orthology predictions is important, but
difficult. The main challenge is that the precise evolutionary history
of entire genomes is largely unknown and, thus, predictions can
only be validated indirectly, using surrogate measures. To be infor-
mative, such measures need to strongly correlate with orthology/
paralogy. At the same time, they should be independent from the
methods used in the orthology inference process. (To be precise,
inferred orthology/paralogy and the surrogate measure should be
conditionally independent with respect to true orthology/paral-
ogy.) Concretely, this means that the orthology inference is not
based on the surrogate measure, and the surrogate measure is not
derived from orthology/paralogy.

The first surrogate measures proposed revolved around conser-
vation of function (59). This was motivated by the common belief
that orthologs tend to have conserved function while paralogs tend
to have different functions. Thus, Hulsen et al. (59) assessed
the quality of ortholog predictions in terms of conservation of
co-expression levels, domain annotation, and protein–protein
interaction (PPI) partners. In addition, they also proposed using
conservation of gene neighborhood as surrogate measure: the frac-
tion of orthologs that have neighboring genes themselves ortho-
logs is an indicator of consistency, and therefore to some extent also
of quality of orthology predictions. The main limitation of these
measures is that it is not so clear how much they correlate with
orthology/paralogy. Indeed, it has been argued that the difference
in function conservation trends between orthologs and paralogs
might be much smaller than commonly assumed, and indeed many
examples are known of orthologs that have dramatically different
functions (60). Similarly, gene neighborhood can be conserved
among paralogs, such as those resulting from whole-genome dupli-
cations. Furthermore, some methods use gene neighborhood
conservation to help in their inference process, which can bias the
assessment done on such measures (principle of independence
stated above).
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The quality of ortholog predictions can also be assessed based
on phylogeny. By definition, the tree relating a set of genes all
orthologous to one another only contains speciation splits, and
has the same topology as the underlying species. We introduced a
benchmarking protocol that quantify how well the predictions
from various orthology inference methods agree with undisputed
species tree topologies (61). The advantage of this measure is that
by virtue of directly ensuing from the definition of orthology it
correlates strongly with it, and thus satisfies the first principle.
However, the second principle, independence from the inference
process, is not satisfied with methods relying on the species tree—
typically, all reconciliation methods, but also most graph-based
methods producing hierarchical groups. In such cases, interpreta-
tion of the results must be done carefully.

For inference methods based on reconciliation between gene
and species trees, Vilella et al. (32) proposed a different phylogeny-
based assessment scheme. For any duplication node of the labeled
gene tree, a consistency score is computed, which captures the
balance of the species found in the two subtrees. Unbalanced
nodes correspond to an evolutionary scenario involving extensive
gene losses and therefore, under the principle of parsimony, are less
likely to be correct. Given that studies to date tend to support the
adequacy of the parsimony criterion in the context of gene family
dynamics (Subheading 2.2.4), it can be expected that this metric
correlates highly with correct orthology/paralogy assignments.
However, since virtually all tree-based methods themselves incor-
porate this very criterion in their objective function (i.e., minimiz-
ing the number of gene duplications and losses), the principle of
independence is violated, and thus the adequacy of this measure is
questionable.

Finally, Chen et al. (62) proposed a purely statistical benchmark
based on latent class analysis (LCA). Given the absence of definitive
answer on whether two given genes are orthologs, the authors
argue that by looking at the agreement and disagreement of pre-
dictions made by several inference methods on a common dataset
one can estimate the reliability of individual predictors. More pre-
cisely, LCA is a statistical technique that computes maximum likeli-
hood estimates of sensitivity and specificity rates for each orthology
inference methods, given their predictions and an error model. This
is attractive because it does not depend on any surrogate measure.
However, the results depend on the error model assumed. Thus, we
are of the opinion that LCA merely shifts the problem of assessing
orthology to the problem of assessing an error model of various
orthology inference methods.

Overall, it becomes apparent that there is no “magic bullet”
strategy for orthology benchmarking, as each approach discussed
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here has its limitations (though some limitations are more serious
than others). Nevertheless, comparative studies based on these vari-
ous benchmarking measures have reported surprisingly consistent
findings (20, 59, 61, 62): these assessment generally observe that
there is a trade-off between accuracy and coverage, and most com-
mon databases are situated on a Pareto frontier. The various assess-
ments concur that the “best” orthology approach is highly
dependent on the various possible applications of orthology.

4. Applications

As we have seen so far, there is a large diversity in the methods for
orthology inference. Themain reason is that, although themethods
discussed here all infer orthology as part of their process, many of
them have been developed for different reasons and have different
ultimate goals. Unfortunately, this is often notmentioned explicitly,
and tend to be a source of confusion. In this section, we review some
of these ultimate goals, and discuss which methods and representa-
tion of orthology are better suited to address them and why.

As mentioned in the introduction, most interest for orthology
is in the context of function prediction, and is largely based on the
belief that orthologs tend to have conserved function. A conserva-
tive approach consists in propagating function between one-to-one
orthologs, i.e., pairs of orthologous genes that have not undergone
gene duplication since they diverged from one another. Several
orthology databases directly provide one-to-one orthology predic-
tions. But even with those that do not, it might still be possible to
obtain such predictions, for instance by selecting hierarchical groups
containing at most one sequence in each species or extracting from
reconciled trees subtrees with no duplication. A more sophisticated
approach consists in propagating gene function annotations across
genomes on the basis of the full reconciled gene tree. Thomas et al.
(63), for instance, proposed a way to assign gene function to
uncharacterized proteins using a gene tree and a Hidden Markov
Model (HMM) among gene families. Engelhardt et al. (64) devel-
oped a Bayesian model of function change along reconciled gene
trees, and showed that their approach significantly improves upon
several methods based on pairwise gene function propagation.
Ensembl Compara (32) or Panther (63) are two major databases
providing reconciled gene trees.

Since Darwin, one traditional question in biology has always
been how species are related to each other. As we recall in the
introduction of this chapter, Fitch’s original motivation for defin-
ing orthology was phylogenetic inference. Indeed, the gene tree
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reconstructed from a set of genes which are all orthologous to
each other should by definition be congruent to the species tree.
OMA Groups (11) have this characteristic and, crucially, are con-
structed without the help of a species tree.

Yet another application associated with orthology are general
alignments between genomes, e.g., PPI network alignments or
whole-genome alignments. Finding an optimal PPI network align-
ment between two genomes on the basis of the network topology
alone is a computationally hard problem (i.e., it is an instance of
the subgraph isomorphism problem which is NP complete (65)).
Orthology is often used as heuristic to constrain the mapping of the
corresponding genes between the two networks, and thus to reduce
the problem of complexity of aligning networks (66). For whole-
genome alignments, people most often use homologous regions
and use orthologs as anchor points (67). These types of applications
typically rely on ortholog predictions between pairs of genomes, as
provided, e.g., by Inparanoid (10) or OMA (11).

5. Conclusions
and Outlook

The distinction between orthologs and paralogs is at the heart of
many comparative genomics studies and applications. The original
and generally accepted definition of orthology is based on the
evolutionary history of pairs of genes. By contrast, there is consid-
erable diversity in how groups of orthologs are defined. These
differences largely stem from the fact that orthology is a nontransi-
tive relation, and therefore dividing genes into orthologous groups
either misses or wrongly includes orthologous relations. This
makes it important and worthwhile to identify the type of ortho-
logous group best suited for a given application.

Regarding inference methods, we observe that while most
approaches can be ordered into two fundamental paradigms—
graph based and tree based—the difference between the two is
shrinking, with graph-based methods increasingly striving to
capture more of the evolutionary history. On the other hand, the
rapid pace at which new genomes are sequenced limits the applica-
bility of tree-based methods, computationally more demanding.

Benchmarking this large variety of methods remains a hard
problem—not only from a conceptual point as described above,
but also because of very practical challenges, such as heterogeneous
data formats, genome versions, or gene identifiers. This has been
recognized by the research community and there is now a joint
initiative to overcome at least these practical hurdles (68).

Looking forward, we see potential in extending the current
model of gene evolution, which is limited to speciation,
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duplication, and loss events. Indeed, nature is often much more
complicated. For instance, lateral gene transfer (LGT) is believed to
be a major mode of evolution in prokaryotes. While there has been
several attempts at extending tree reconciliation algorithms to
detecting LGT (69, 70), none of these have been adopted by
orthology databases. Another relevant evolutionary process omit-
ted by most methods are whole-genome duplications (WGDs).
Even though WGD events act jointly on all gene families, with
few exceptions (71, 72), most methods consider each gene family
independently.

Overall, the orthology/paralogy dichotomy has proved to be
useful, but also inherently limited. Reducing the whole evolution-
ary history of homologous genes into binary pairwise relations is
bound to be a simplification—and at times an oversimplification.
Thus, the trend toward capturing more features of the evolutionary
history of genes can be expected to continue for a long time, as we
are nowhere close to grasp the formidable complexity of nature.

6. Exercises

Assume the following evolutionary scenario

A B C D E F

where duplications are depicted as *, and all other splits are
speciations.

Problem #1: Draw the corresponding orthology graph, where the
vertices correspond to the observed genes and the edges indicate
orthologous relations between them.
Problem #2: Apply the following two clustering methods on your
orthology graph. First, reconstruct all the maximal fully connected
subgraphs (cliques) that can be found. Second, reconstruct the
COGs. COGs are built by merging triangles of orthologs whenever
they share a common face. Remember that in both methods a gene
can only belong to one cluster.
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