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1 Intro: What is local adaption? (a circumscribed overview)

The apparent “fit” of an organism to its environment has long been a topic of interest: phenotypic correlation
with environmental variables. What are some examples that you find most compelling?

This “fit” has been taken as evidence of selection, but is it really? How do we claim that the association
between an apparent phenotype an an apparent environmental variable(s) are not by chance?

— How could this be tested?

* experimental: i.e. transplant experiments (not covered here)

x statistically: i.e. methods to test for changes in phenotypes or genetic variation

e We are going to focus on (1) genetic/genomic data and (2) recent evidence for adaptation.

General types of approaches

— pop. gen
— GWAS
— QTL

2 population genomic approaches

e many of the current usages of Fgr trace back to the mid 20th century and work of Sewall Wright [1]

e Fgp = “fixation indices” = statistical framework for studying the expected level of heterozygosity in populations



e the ability to get measurements required the technology to start accessing heterozygosity (protein variation
and DNA variation)

e most common modern usage: allele frequency differences between populations:
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which is the average sample size across the the samples, that incorporates/corrects for the variance in sample
size over the subpopulation

e there are multiple modification on the Weir & Cocker formulations, and related

— blog discussion

2.1 “more standard” Fgt approahces

e raw Fgr scans: determine the empirical/null distribution of Fgr on your data the tail(s) should be enriched
with candidates for population differentiation

— simple, no additional info needed

— sometimes all you really want to know are differentiated positions (especially if they fall w/in “good”
candidate loci)

* examples: [2]
— lots of false positives, you will always have a tail
— usually pair-wise, which is not always ideal
— software:

* custom scripts,

* arlequin [3],
x DnaSP [4]
* fsthet (R package)

e raw Fgt scans 4+ better info on a null distribution: determine the empirical distribution + provide a

threshold that is informed by demographic modeling and simulations (i.e. [5]), or additional inspection of Fgr
distribution

— potentially still simple if a demographic model exists for you samples (but how good is the demographic
model ?7)


https://www.molecularecologist.com/2011/03/should-i-use-fst-gst-or-d-2/
http://cmpg.unibe.ch/software/arlequin3/
http://www.ub.edu/dnasp/DnaSP32Inf.html
https://rdrr.io/cran/fsthet/f/vignettes/fsthet-vignette.Rmd

— potentially provides extra protection agains false positives (depends on the demographic model)

* simulation software: coalescent simulator (i.e. ms [6], fastsimcoal (XX), primems (XX), cosi (XXX)

e null distribution via other means:

2.2

— matched data to form a null

* software:
- SmileFinder [7]
- posterior predictive simulation for 2 populations: GppFst (R package)
- “GppF'st will compute the probability of observing an empirical proportion of loci within a given
Fst range conditioned on the particular coalescent model of population divergence”

— matched Fgr distribution

x software:
- OutFLANK [8] (R package)
- attempts to fit x? distribution to central part of a Fgr distribution from a reference set of variants

Hierarchical approaches: one may want more flexibility in deciding what are the groupings

— software: HierFstat (R package)

* while some software allows a limited number of hierarchical levels, HierFstat (which implements the
methods of Yang [9] ) allows an arbitrary number of levels [10]

PCA-based approaches

— software: pcadapt [11] (R package)

x very fast and naturally accounts for population structure

more complicated model-based approaches
Bayesian “F-models”

— software: BayeScan [12, 13]
* model choice approach in Bayesian framework
— software: BlockFeST [14]

* builds on Bayescan but groups variants into predefined blocks

haplotype-based approaches

software: hapFLI [15, 16]

— builds upon a parametric test that is tree-based (includes branching order and pop. size variation) and
extends it to haplotypes

extended haplotype tests: iHS, EHH, XP-EHH
— software: rehh [17], fastPTTASE [18], hapbin [19], selscan [20]

— picks up on sweep signals that extend the run of homozygosity

combining genetics with environmental traits more explicitly
software: BayeScEnv [21]

— builds upon BayeScan but with the ability to incorporate environmental variables
software: BayEnv [22, 23]

— builds on Bayescan but groups variants into predefined blocks


https://github.com/wilfriedguiblet/smilefinder
https://github.com/radamsRHA/GppFst
https://github.com/whitlock/OutFLANK
https://cran.r-project.org/web/packages/hierfstat/index.html
https://cran.r-project.org/web/packages/pcadapt/vignettes/pcadapt.html
http://cmpg.unibe.ch/software/BayeScan/download.html
https://academic.oup.com/bioinformatics/article/34/18/3205/4987139
https://pypi.org/project/hapflk/
https://cran.r-project.org/web/packages/rehh/index.html
http://stephenslab.uchicago.edu/software.html#fastphasel
https://github.com/evotools/hapbin
https://github.com/szpiech/selscan
https://github.com/devillemereuil/bayescenv
https://gcbias.org/bayenv/

5 QTL
o software: R\QTL [24]

— implements a large set of methods and plotting functions and many tutorials

6 GWAS
e software: GWASTools [25], Plink [26], rrBLUP [27], GWASpoly [27] [28], Hail, BGENIE [29]

— like much of above, this is a huge area of research so this is only a subset of the tools


https://rqtl.org/
https://bioconductor.org/packages/release/bioc/html/GWASTools.html
http://zzz.bwh.harvard.edu/plink/
https://rdrr.io/cran/rrBLUP/
https://potatobreeding.cals.wisc.edu/software/
https://www.hail.is/
https://jmarchini.org/bgenie/
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