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What to analyze?
Cell size

size at birth, and the slope of the linear fit of the plot of aTG1 against
ln(Mbirth) will be 0. By contrast, if G1 is controlled by a sizer, all cells
will bud at the same size Mbud, independent of their size at birth,
implying that the slope of the linear fit of aTG1 against ln(Mbirth) will
be –1 (ref. 27).

For the following analysis, rigorous statistical testing of fits is
described in the Supplementary Information.

Scaled G1 duration in mother cells is essentially independent of cell
size (slope < –0.1), showing that mother G1 is controlled by a timer
(Fig. 2d, Supplementary Fig. 9). Daughters, by contrast, show
stronger size control (slope < –0.4). Binning the daughter data
(Fig. 2e inset) suggested decomposition into two segments, one for
small newborn daughters (,67% of the average budding size), in
which an efficient sizer was deduced (slope < –0.7), and a second
segment for larger-born daughters, which showed much less depend-
ence on cell size (slope < –0.3; Fig. 2e). Statistical confidence in this
decomposition was limited by the small number of very small daugh-
ters obtained; therefore, we employed the genetic method described
in ref. 17 to make unusually small wild-type daughter cells by tran-
sient expression of conditional MET3–CLN2 (see Supplementary
Information). Inclusion of these data (Fig. 2f) provided strong stat-
istical support for the two-slope model (linear fit: P , 0.05; two-slope
fit: P . 0.7).
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Figure 1 | Noise in G1 duration is reduced by increased ploidy or increased
G1 cyclin gene dosage. a, Composite phase contrast, Myo1–GFP and
ACT1pr–DsRed images for haploid cells. b, Illustration of measured
intervals. c–l, Frequency histograms (n 5 87–202) of the duration of G1 for
wild-type (WT) haploid (c, h), diploid (d, i) and tetraploid (e, j), haploid
63CLN3 (f, k), and haploid 63CLN2 (g, l), daughters (c, d, e, f, g) and
mothers (h, i, j, k, l). Insets: mean and coefficient of variation (CV: s.d./mean,
a standardized noise measure).
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Figure 2 | The correlation between cell size and G1 duration shows that a
noisy size control operates in daughters. a, Logarithm of total DsRed
fluorescence (M) per cell in a single representative cell from birth to
cytokinesis. Doubling time is ln(2)/a, where a is the slope of the linear fit.
b, Haploid cell doubling time distribution. c, Total DsRed fluorescence in an
entire colony over time. d, e, Correlation between aTG1 (growth-rate-
standardized time in G1) and ln(M) for haploid mothers (d) and daughters
(e) at birth (ln(Mbirth)). Insets, binned data. f, Data from e (solid blue dots),
supplemented with data from unusually small wild-type haploid daughters
(open green circles), generated using essentially the method of ref. 17. For
statistical analysis and estimated slopes, see Supplementary Information.

LETTERS NATURE | Vol 448 | 23 August 2007

948
Nature   ©2007 Publishing Group

size at birth, and the slope of the linear fit of the plot of aTG1 against
ln(Mbirth) will be 0. By contrast, if G1 is controlled by a sizer, all cells
will bud at the same size Mbud, independent of their size at birth,
implying that the slope of the linear fit of aTG1 against ln(Mbirth) will
be –1 (ref. 27).

For the following analysis, rigorous statistical testing of fits is
described in the Supplementary Information.

Scaled G1 duration in mother cells is essentially independent of cell
size (slope < –0.1), showing that mother G1 is controlled by a timer
(Fig. 2d, Supplementary Fig. 9). Daughters, by contrast, show
stronger size control (slope < –0.4). Binning the daughter data
(Fig. 2e inset) suggested decomposition into two segments, one for
small newborn daughters (,67% of the average budding size), in
which an efficient sizer was deduced (slope < –0.7), and a second
segment for larger-born daughters, which showed much less depend-
ence on cell size (slope < –0.3; Fig. 2e). Statistical confidence in this
decomposition was limited by the small number of very small daugh-
ters obtained; therefore, we employed the genetic method described
in ref. 17 to make unusually small wild-type daughter cells by tran-
sient expression of conditional MET3–CLN2 (see Supplementary
Information). Inclusion of these data (Fig. 2f) provided strong stat-
istical support for the two-slope model (linear fit: P , 0.05; two-slope
fit: P . 0.7).
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Figure 1 | Noise in G1 duration is reduced by increased ploidy or increased
G1 cyclin gene dosage. a, Composite phase contrast, Myo1–GFP and
ACT1pr–DsRed images for haploid cells. b, Illustration of measured
intervals. c–l, Frequency histograms (n 5 87–202) of the duration of G1 for
wild-type (WT) haploid (c, h), diploid (d, i) and tetraploid (e, j), haploid
63CLN3 (f, k), and haploid 63CLN2 (g, l), daughters (c, d, e, f, g) and
mothers (h, i, j, k, l). Insets: mean and coefficient of variation (CV: s.d./mean,
a standardized noise measure).

ln
(M

)   Birth   Birth 

ln(Mbirth) 

ln(Mbirth) ln
(M

) 

Time (min) Time (min) 

0.4 

0 

–0.4 

3 

2 

1 

40 

20 

0 
0 

0 

0.8 

–0.8 –0.4 0.4 0 

0.6 

0.4 

0.2 

0 

40 80 60 80 100 120 140 160 120 

Time (min) 
100 200 300 400 

a b 

c 

N
 

e 

Mothers 

– – 

– – – – 

Daughters Daughters and extra-small daughters

Single cell 

  Birth Cytokinesis 

Doubling time = 102 ± 4 min 

Doubling time = 100 ± 1 min 

Single cell  
doubling times 

Colony 

f 

d 

αT
G

1 

0.8 

0.6 

0.4 

0.2 

0 

αT
G

1 

αT
G

1 

ln(Mbirth) 

ln(Mbirth) 

–0.8 –0.4 0.4 0 

αT
G

1 

0.8 

0.6 

0.4 

0.2 

0 

αT
G

1 

ln(Mbirth) 

ln(Mbirth) 

–0.8 –0.4 0.4 0 

αT
G

1 

Figure 2 | The correlation between cell size and G1 duration shows that a
noisy size control operates in daughters. a, Logarithm of total DsRed
fluorescence (M) per cell in a single representative cell from birth to
cytokinesis. Doubling time is ln(2)/a, where a is the slope of the linear fit.
b, Haploid cell doubling time distribution. c, Total DsRed fluorescence in an
entire colony over time. d, e, Correlation between aTG1 (growth-rate-
standardized time in G1) and ln(M) for haploid mothers (d) and daughters
(e) at birth (ln(Mbirth)). Insets, binned data. f, Data from e (solid blue dots),
supplemented with data from unusually small wild-type haploid daughters
(open green circles), generated using essentially the method of ref. 17. For
statistical analysis and estimated slopes, see Supplementary Information.
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Fig. 1. Measurement of protein concentrations
by fluorescence microscopy, flow cytometry,
and quantitative immunoblotting. (A and D)
Differential-interference contrast and fluores-
cence micrographs of living wild-type (wt) cells
and cells expressing integrated polo kinase
Plo1p-mYFP (SPBs marked by arrows), myosin
regulatory light chain Rlc1p-mYFP, and fimbrin
Fim1p-mYFP at endogenous levels, or YFP-actin
from a plasmid (strain JW1206). Fluorescence
micrographs of 12 z-sections spaced at 0.6-mm
intervals were projected into a two-dimensional
image using (A) a sum intensity projection or
[(D) and (A, inset)] maximum intensity projec-
tion. The inset in (A) shows the broad band
marked by the arrowhead. Numbered cells in
(D) expressed YFP-actin at low levels but were
included in measurements. (B) Quantitation of
septin Spn1p-mYFP by immunoblotting with
antibody to YFP. In lanes 1 to 8, a standard
curve was generated with 0 to 1.2 ng of purified
6His-mYFP mixed with 5 ml of wt cell extract.
Lanes 9 to 12 have duplicate samples of 5.0 and
2.5 ml of cell extract, giving Spn1p-mYFP signal
in the linear range of standard curve. A
nonspecific band from cell extract provided a
convenient loading control. (C) The correlation
of average fluorescent molecules per cell from
immunoblots (upper x axis) and cytoplasmic
concentration (lower x axis) with cell-size–
corrected integrated mYFP fluorescence intensi-
ty per cell from microscopy (mean T 1 SD; solid
circles and darker error bars; y 0 0.0676x, R 0
0.99) and fluorescence intensity from flow
cytometry (mean T 1 SD; open squares and
lighter error bars; y 0 0.0676x, R 0 0.99) for
strains expressing integrated mYFP fusion proteins. (E) Measurements of
actin concentration by immunoblotting using antibodies to YFP (upper
blot) and antibodies to actin (lower blot). Dilutions of cell extract of a
strain with YFP-actin plasmid (JW1206) or wt JW729 grown in minimal

medium for 36 hours and then in rich medium for 4 hours, and standards
of purified 6His-mYFP (upper blot) and S. pombe actin (lower blot) with or
without cell extract from wt cells were separated by SDS-polyacrylamide
gel elecrophoresis. Scale bars, 5 mm.
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Fig. 2. Measurement of protein concentrations by fluores-
cence microscopy. (A) Cytoplasmic concentration of fimbrin
(solid circles) and YFP-actin (solid triangles) as a function of
cell volume. Mean concentrations and cell volumes T 1 SD
are shown. (B) Local accumulation of proteins in actin
patches. Top: Fluorescence micrographs (maximum intensi-
ty projection) of interphase and septating cells expressing
Fim1p-mYFP. Bottom: Box plots of molecules of YFP or
mYFP fusion proteins per patch in 70 to 200 patches in 2 to
6 cells for each protein. Box plots display mean (marked
with !), median (line inside the box), and outliers (cicles).
The box represents the middle 50% data and the bars
represent the top and bottom 25% data. (C) Local
accumulation of proteins in SPBs during cytokinesis. SPB
separation defines time zero. The cell-cycle time was
calculated from the separation of the SPBs and septum
diameter. Top: Micrographs (sum intensity projection) of
cells expressing mYFP (YFP for Cdc7p) fusion proteins.
Bottom: Time course of the mean accumulation T 1 SD of
three fusion proteins in SPBs. Scale bars, 2.5 mm.

0

1

2

3

4

5

6

50 70 90 110 130

Fimbrin-mYFP: 5.34 ± 0.56 µM
YFP-actin: 0.78 ± 0.71 µM

C
yt

op
la

sm
ic

 c
on

ce
nt

ra
tio

n 
(µ

M
)

Cell volume (µm3)

A C

B

-20 0 20 40 60 80
Time (minutes)

M
ol

ec
ul

es
 a

t S
P

B
 (

× 
10

0)

10

8

6

4

2

0

Actin: 2700 ± 1700

M
ol

ec
ul

es
/p

at
ch

 (
× 

10
0)

12

10

8

6

4

2

0
YFP-
actin

Arp2 Arp3 Arc1 Arc3 Arc5 Acp2 Fim1

-10 0 1 12 18-
25

40 60 75

SPB 
marker
Sad1p

Polo 
kinase
Plo1p

SIN 
kinase
Cdc7p

Time 
(minutes)

Interphase Septating

Fim1p

Sad1p
Plo1p
Cdc7p in new SPB
Cdc7p in old SPB

R E P O R T S

www.sciencemag.org SCIENCE VOL 310 14 OCTOBER 2005 311

 o
n

 S
e

p
te

m
b

e
r 

2
5

, 
2

0
0

7
 

w
w

w
.s

c
ie

n
c
e

m
a

g
.o

rg
D

o
w

n
lo

a
d

e
d

 f
ro

m
 

Expression level 

Wu et al. Science, 2005

Localization

induction. The delay between the stimulus and mRNA
production corresponds to the time required for signal
transduction, association of Hog1 with TFs, induction of
chromatin remodelling and recruitment of the polymerase24,32.

The PP7 measurements confirm the transient nature of the
transcription induced by the activation of the HOG pathway. To
obtain a read-out of protein synthesis induction and arrest, we
modified the inducible unit by adding a destabilization sequence
(UbiY-2xNLS-SZ, Fig. 2c). Upon translation of the peptide, the
leading ubiquitin is cleaved off and the exposed amino acid (Y)
decreases the half-life of the protein to a few minutes33. With this
construct, protein production is counterbalanced by protein
degradation. As long as the rate of protein production is larger
than protein degradation, the dPSTR accumulates in the nucleus
(Fig. 2b). Shortly after the mRNA production reaches its
maximum, the dPSTR fluorescence which has accumulated in
the nucleus starts to return slowly to a uniform localization as can
be seen by the decline in nuclear enrichment. Moreover, using the
unstable version of the dPSTR prevents the accumulation of the
inducible peptide in the cell thereby avoiding any saturation effect
(Supplementary Figure 5a–c).

Using cycloheximide inhibition, we quantified a half-life for the
unstable peptide of 2 min (Supplementary Fig. 5d). Therefore, the
observed decline in nuclear enrichment, with a half-life close to
10 min, is not only solely limited by the dPSTR degradation rate
but also reflects the implication of other biological factors, such as
the arrest of transcription and the stability of the mRNA. The
comparison between the PP7 and dPSTR measurements shows a
short expected temporal delay between mRNA transcription and

protein synthesis comprising processes such as mRNA export and
translation34. This close consecutive apparition of PP7 and
dPSTR signals further confirms that the dynamics of protein
production measured with the dPSTR correspond to the genuine
kinetics of protein expression.

Correlation of signalling activity and protein expression. In
order to correlate signalling activity and protein expression
dynamics, the degradable reporter construct (comprising the
UbiY destabilization sequence) was transformed in a strain
bearing the MAPK Hog1 tagged with yellow fluorescent protein
(YFP) (Fig. 3a). Hog1 nuclear accumulation upon hyper-osmotic
stress is linked to its activity35 and has been extensively used to
quantify the dynamics of signal transduction in the HOG
pathway11,36,37. A few minutes after Hog1 relocates in the
nucleus, the pSTL1-dPSTRR starts to accumulate in the nucleus.

Figure 3b displays the changes in cell area upon increasing
osmotic challenges, which trigger an immediate shrinking of the
cells. Depending on the severity of the stress, the cells need
between 10 and 30 min to recover their original sizes. Figure 3c
depicts Hog1 relocation, quantified as the ratio of nuclear to
cytoplasmic YFP fluorescence as a function of time, which is
almost a mirror image of the cellular adaptation process. Indeed,
Hog1 enters the nucleus quickly after stress, and it returns to a
uniform localization when cells recover their original sizes. The
MAPK drives the adaptation process by increasing the produc-
tion of glycerol, causing a negative feedback on its own
activity38,39.
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Figure 3 | Lack of correlation between Hog1 activity and pSTL1 expression at the single-cell level. (a) Microscopy images of a strain with Hog1 tagged
with mCitrine and carrying the unstable pSTL1-dPSTRR that was challenged by 0.2 M NaCl. The nuclear accumulation of Hog1-YFP precedes protein
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hanced green fluorescent protein (GFP) reporter,
which localizes to chromatin (14). This presents
an effective marker for cell positions and cell
divisions because changes in chromatin density
can be directly observed. Imaging was performed
for 24 hours, providing about 400,000 images
per embryo.

We measured nuclear fluorescence inten-
sities and found that steady-state GFP concen-
trations are reached at ~12 hours post fertilization
(hpf), owing to the limited stability of the in-
jected mRNA. However, despite continuous
imaging for another 12 hours, the fluorescence
intensity levels remained constant. This indi-
cates a negligible photobleaching rate in DSLM
high-speed live imaging (fig. S3). We applied
comparable experimental settings in state-of-
the-art confocal and two-photon fluorescence
microscopes. The embryo was exposed to a fac-
tor of 5600 more energy in the confocal (9.6 mJ
at 488 nm passing each plane) and to a factor
of 106 more energy in the two-photon fluores-
cence microscope (1.7 J at 930 nm passing each
plane) (8). Thus, DSLM allows for a compre-
hensive, quantitative analysis of zebrafish em-
bryonic development, over periods longer than
24 hours, with high spatiotemporal resolution
and ultralow phototoxicity.

The digital embryo. To efficiently handle
the large amounts of microscopy data, we de-
veloped a parallelized image segmentation
pipeline, i.e., a set of software modules that
automatically detects nuclei in the raw images
by using large-scale computer networks (at
the European Molecular Biology Laboratory,
EMBL; and Karlsruhe Institute of Technol-
ogy, KIT) (fig. S4). Image segmentation was
performed by (i) recursive refinement of the
three-dimensional shapes and internal struc-
tures of objects detected in the microscopy data
(fig. S5), (ii) subsequent filtering of these
objects according to the morphological char-
acteristics expected for nuclei, and (iii) an anal-
ysis of the identification rate for each nucleus
throughout time (8). Because of the high signal-
to-noise ratio of the DSLM data, we obtained
a robust average segmentation efficiency of
97% during the first 10 hours of embryogen-
esis and an average of 90% during late gas-
trulation (8). The microscopy data acquired
along the two opposing directions were seg-
mented separately and subsequently combined
into a complete data set by a fusion algorithm
(8). A “digital embryo” was derived for each
experiment and constitutes a comprehensive
database of the positions, sizes, and fluores-
cence intensities of 92% of the nuclei in the
entire embryo (determined by manual controls)
(8) throughout early embryogenesis from early
cleavage stages up to the onset of heartbeat
(Fig. 2 and movie S3). The algorithms, fur-
thermore, provide 99.5% efficiency in con-
verting these nuclear positions into migratory
tracks, corresponding to one tracking error per
200 time points or 3 to 5 hours (8). We pro-

cessed seven 24-hour time-lapse recordings of
zebrafish embryogenesis and obtained devel-
opmental blueprints with 55 million nuclear
data entries, including a reconstruction of the
zebrafish one-eyed pinhead mutant (MZoep)
(15). Our data on zebrafish embryogenesis
from 1.5 to 30 hpf are presented as time-lapse
movies of the microscopy recordings (movies
S2, S4, S7, and S12) and as movies of the
reconstructions (movies S3, S5, S8, and S13).
Further analysis of the digital embryos (8) pro-
vides a detailed description of morphogenetic
and developmental processes at subcellular res-
olution (fig. S3), spatiotemporal coordinates
and polarity of cell divisions (movie S10 and
Fig. 3B and fig. S6), global nuclear population
statistics (figs. S3 and S6), embryo-to-embryo
variability in morphogenetic key parameters
(fig. S7), and cell tracking throughout devel-
opment (movies S9, S11, S14, and S15 and
Fig. 3A).

The digital embryos provide direct quan-
titative access to a global analysis of cell and
tissue behavior, as shown below. In order to
visualize morphogenetic domains, we tracked
individual cell movements up to somitogene-
sis stages and color-encoded the information
on directionality (movies S9, S14, and S15
and Fig. 3A). This analysis identifies morpho-
genetic movements during development (em-
boly, epiboly, convergence, and extension) and
provides a global, quantitative perspective of
their interplay.

Early morphodynamic symmetry-breaking.
Nuclear b-catenin is one of the earliest markers
for the future dorsal side of the embryo (~512-
cell stage) (16, 17), which raises the question of
whether morphodynamic symmetry-breaking
also occurs at this early time point. We mapped
and analyzed the three-dimensional patterns and
polarity of early cell divisions in five embryos
during 1.5 to 7 hpf [all experiments were per-
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Analysis steps

Object recognition (segmentation) 

Feature Measurements 

Tracking 

The first step of segmenting cells is differentiating cell
microcolonies (or clusters) from empty regions of the frame.
This initial microcolony mask is created by a thresholding
operation on the phase contrast image which identifies
clusters by their low relative intensity (Fig. 5, Panel B). The
threshold value is set as a constant in the segmentation

parameters. Since the threshold is applied after the image
intensity is normalized, it does not need to be adjusted
from dataset to dataset. The phase contrast shade-off (the
loss of phase-based contrast in the middle of microcolo-
nies) and halo artifacts complicate the interpretation of the
phase image and the image is filtered to compensate for

Fig. 4. General work flow in
SuperSegger: The fluorescence and
phase images are processed and
aligned.
During segmentation the cell regions
are identified from the background.
Then each cell region is linked to a
corresponding cell region in the next
frame and the cells receive unique ID
numbers. Next, the properties and
fluorescence characteristics of each
cell are calculated. Finally, the
program outputs three different types
of outputs: Frame files, Clist matrices
and Cell files.
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Fig. 5. Image segmentation procedure in SuperSegger.
E. coli cells are shown as a representative example.
Panel A: Original phase image.
Panel B: Mask of cells using intensity thresholding.
Panel C: Phase image after the contrast (maximum principal curvature) filter and the mask are applied.
Panel D: Boundaries found using the watershed function.
Panel E: Boundaries after the boundary optimization and
Panel F: Boundaries after region optimization. Boundaries are divided into fixed boundaries (red), boundaries that the software classified as
true (orange) and false (blue). In Panel E on the right side, there is a boundary incorrectly set as true after boundary optimization which is set
to false after region optimization in Panel F.
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How to analyze?

Manual analysis

Automated

Algorithm

Artificial intelligence



Manual analysis
Advantages

Disadvantages

+ High precision

+ Great flexibility

+ Easy access

+ Semi-automation possible

- Low throughput

- Time consuming

- Low number of cells


- Bias in cell selection




What is a yeast cell?

The hundreds of dynamic measurements acquired with the
PP7 reporter form a rich dataset where multiple features can be
extracted from each single-cell trace (Fig. 1e, Methods). Our
automated image segmentation and analysis allow to reliably
quantify the appearance (Start Time) and disappearance (End
Time) of the TS (Supplementary Fig. 2 and Methods). The
maximum intensity of the trace and the integral under the curve
provide estimates of the transcriptional output from each

promoter (Fig. 1e). In addition, transcriptional bursts can be
identified by monitoring strong fluctuations in the TS intensity.

Validating the live mRNA reporter assay. The mRNA dynamics
measured with the PP7 assay are in close agreement with pre-
viously reported data sets34,36. Nonetheless, we also verified with
a dynamic protein expression reporter that comparable results
can be obtained (Supplementary Fig. 3a). The dynamic Protein
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on the cell density in the image. It is typically easier to
recognize single cells or groups of two to four cells compared
to cell clusters composed of ten or more cell.

The tracking algorithm matches the positions of the centre
of the objects in the current frame of the movie versus all the
centres in the previous frame. The object with the closest
distance to an object in the previous frame (within a certain
range) is assigned the tracking label of that object. If no
matching object is found in the previous frame, the program
will compare all earlier frames of the movie to find any object
at that given position that can be matched to the current
object.

The efficiency of the tracking in movies depends on many
experimental factors. In the media segmentation experiment,
88% of the cells found in the first frame were tracked until the
end. This percentage droped to 79% when using bright field
segmentation, probably because in this experiment the seeding
density of cells was higher and the time interval between each
frame was larger, thus extending the total duration of the
movie. In the nuclear/cytoplasmic segmentation experiments,
this percentage was reduced to 67% although the fidelity of the

cell segmentation was higher. This unexpected finding most
likely results from the fact that the nucleus can move within
the cell and thus disappear from the image by leaving the
focal plane.
Most of the performed experiments are of relatively short

duration: ten minutes to a few hours, which allows less then
three divisions. The daughter cells appear as new cells in the
analysis once they reach a given size, however no information
about the parental linage has been encoded in the program.
For longer experiments, the dividing cells can quickly fill the
whole field of view, making it very hard to segment and track
individual cells. More importantly, daughter cells often
grow out of the focal plane of the microscope preventing
their proper detection. This situation can be improved by
using microfluidic devices with a height matching the size
of the yeast cells, which restricts cell division to a single plane
and has been used efficiently to track cells over many
generations.15,16

Secondary objects

Although the primary segmentation method provides one or
two objects, it is often necessary to define other regions within
or around these objects. As shown in Fig. 2E, such secondary
objects can either be defined by geometrical parameters or
deduced from intensity information from an additional image.
For example, the secondary object highlighted in red and
called ‘‘media’’ was made of pixels outside of the cell, which
are more than 2 but less than 10 pixels away from the border
of the primary cell object. This secondary object could equally
well be defined inside the cell with slightly different parameters
to quantify for instance the intensity of the cell membrane. The
secondary object in blue was based on the intensity of a
fluorescent image, of which 30% of all pixels with the highest
intensity within the primary object were selected. This threshold
allows exclusion of low intensity pixels, which often belong to
the edge of the cell or the large vacuole present in yeast cells,
thus allowing concentrating the analysis on cytoplasmic and
nuclear signals.
Taken together, the described segmentation methods allow

the automatic identification of cells in images and combined
with secondary objects, the region of measurement can be
further refined. The ability to identify and track individual
cells in time-lapse movies allows dynamic quantification of the
transduction of information, and thereby provides the experi-
mental basis to study signalling networks and cellular outputs
at the single cell level.

Protein expression

Quantifying the expression of transcriptional targets is a
commonly used readout to quantify pathway activity upon
stimulation, and can be achieved with GFP-tagged proteins.
However, these measurements are often limited by low expres-
sion levels or by interference of the large GFP moiety with the
function of the endogenous protein. Moreover, the expression
levels of endogenous protein reporters are dependent on
additional regulatory mechanisms, such as protein translation
or protein stability. To circumvent these problems, synthetic
expression reporters have been generated which are based on

Fig. 2 Segmentation routines implemented by the platform.

(A) Cellular intensity segmentation for whole cell detection. (B) Fluor-

escent media segmentation. Individual cells are recognized based on

the intensity of a fluorescent dye mixed with the media surrounding the

cell. (C) Combination of nuclear and cytoplasmic fluorescent tags

allows defining a cellular and nuclear object for each cell. (D) Bright

field segmentation for whole cell detection is based on two bright-field

images measured at two different focal planes. (E) Definition from

secondary objects based on a primary object and an intensity image.

A secondary object (HiIntPix, blue) can be defined by selecting, for

example, the 30% of the pixels with the highest intensity for each cell.

Another secondary object (media, red) can be defined by geometrical

parameters for pixels surrounding each cell.
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damaging or inhibiting to the division of the majority of cells. The
increase in the maximum observed SC microcolony size after
24–72 h compared to t= 0 translates to approximatetly 9–10
generations of cell division per bead under the imposed carbon
substrate regime (assuming a round packed colony of cells,
Supplementary Note 1).

The estimated aggregate community growth rates were
comparable for suspended and bead growth when using the
same defined mixed carbon substrate (Fig. 2a; two-sided t-test,
p= 0.0952, n= 3). SC growth in beads was faster with sand
extract than with mixed C substrate (Fig. 2a; two-sided t-test, p=
0.0281, n= 3), suggesting that the diversity of substrates extracted
from sand is favorable for community-level proliferation. Because
of the different methodologies to quantify biomass in the high

connectivity (cell counting) and low connectivity (microcolony
imaging) environments, we quantified SC yields for the different
environments relative to those for P. veronii under the same
conditions (Fig. 2d). We further quantified SC yields by
quantifying the mass of isolated DNA from sub-samples. The
ratios of SC to P. veronii yields were not significantly different
between liquid suspended and bead growth (Fig. 2d; two-sided t-
tests, p > 0.1). Isolated DNA concentrations from SC in low or
high connectivity were also not significantly different (p= 0.10,
Supplementary Table 2), indicating that the aggregate community
yields of SC in high and low connectivity environments were
similar. These experiments thus indicated that the sand-derived
microbial community as a whole was capable of growing under
both experimental conditions, and suggested that its aggregate

Fig. 2 Aggregate community growth is unaffected by environmental connectivity. a Growth of SC cells under high (i.e., mixed liquid suspension, in
cells ml‒1) and low connectivity conditions (i.e., encapsulated in beads). Growth in beads is expressed as the mean per bead productivity (PBP). PBP is
defined as the product of imaged microcolony areas times their mean SYTO-9 fluorescence intensity summed per bead, averaged across all imaged beads
(n = 100–500 beads) in a replicate series. Mix C, mixture of 16 different carbon substrates (equimolar, to 1 mM final carbon concentration); sand extract,
carbon and nutrient solution extracted from sand. Bars show mean community cell numbers of four (liquid) or three (beads) biological replicates, ± one SD,
with individual data points. “µ” derived maximum community growth rate. Image shows detail of microcolonies (in cyan) in beads after 48 h. b as a but for
a pure culture of the soil bacterium P. veronii. c Estimated proportion of non-growing P. veronii (Pve) or SC cells in bead incubations below the defined PBP
thresholds. d SC community yield comparison across high and low connectivity conditions, taken as the ratio of SC yield to that of P. veronii under the same
conditions. p-values from t-test (two-sided, unequal variance) of individual ratios, n = 12 (liquid) or 9 (beads). Bars show mean ratios with symbols
presenting individual data points.
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factors encoded on ICEclc (25). This limited cell division leads to
the formation of small groups of tc donor cells, which are
thought to benefit the overall transfer success of ICEclc by in-
creasing the chance to contact recipients (31).
With few exceptions (25, 32), most of the current knowledge

on ICE behavior derives from population-level genetic studies.
Very little is known about the cellular events during transfer,
which, given the low frequencies of ICE conjugation, are chal-
lenging to study. Of particular interest is what ICE transfer
provokes in a donor cell and how or whether ICE can maximize
successful transfer. Our starting hypothesis based on previous
results (25) was that tc donor cells, when they have been initi-
ated, would efficiently deliver the ICEclc at a high rate of suc-
cessful transfer. Single-cell studies have been previously used to
follow plasmid conjugation in which case donor cell fates have
not been particularly addressed (33–35), but because ICEs be-
have very differently, those results are not immediately adapt-
able. Hence, to better study and understand donor cell fates, we
develop a fluorescence reporter that distinguishes the four key
steps of ICE transmission: activation, excision, actual transfer,
and integration into new recipients. The reporter is calibrated on
donor populations alone and in real-time transfer experiments
between donors and recipients, and compared with quantitative
PCR (qPCR) measurements of ICEclc excision. In contrast to
our expectations, we find that donor cells display highly variable
phenotypes characterized by dynamic ICEclc behavior, which
can be explained by stochastic modeling of different cell state
transitions. Despite the variability in cell fates, horizontal
transmission is successful in 75% of donor cells in which ICEclc
excises. Further work will be needed to understand the molec-
ular events underlying the emergence of the different cell fates.

Results
Development of a Tool to Visualize ICEclc Excision and Transfer from
Single Donor Cells. To better understand the dynamic fate of
ICEclc during transfer, we developed a tool to follow experi-
mentally single donor cell fates in absence or presence of re-
cipients. The tool consists of an ICEclc reporter variant in which
egfp is placed directly downstream of the intB13 integrase gene in
the same bicistronic transcription unit (Fig. 1A, Table S1, and
Fig. S1). Initiation of transcription of the integrase gene is a key
feature of donor cells in which ICE becomes active (25) and
would be visible as single cells producing EGFP above back-
ground levels (Fig. S2) (36). However, upon excision and ICEclc-
DNA circularization, a stronger constitutively transcribed
promoter (Pcirc) is placed upstream of intB13 (30), which we
expected would be reflected in higher EGFP production (Fig.
1A). Pseudomonas putida carrying a single integrated copy of
such ICEclc-intB13-egfp (strain 4611) expressed EGFP in 5.9 ±
0.4% of individual cells after 72 h in stationary phase (Fig. S3A).
This is consistent with previously measured proportions of ini-
tiated tc cells in stationary-phase cultures of P. putida ICEclc and
P. knackmussii B13, estimated from EGFP expression of single-
copy Pint-egfp insertions located outside ICEclc (17, 37). In
P. putida carrying the same ICEclc-intB13-egfp bicistronic fusion
but with an additional deletion of the mfsR global negative
regulator [strain 4612 (27)], 45 ± 5% of individual cells expressed
EGFP after 72 h in stationary phase (Fig. S3A). The ICEclc

Fig. 1. Life cycle of the ICEclc element in Pseudomonas. (A) ICEclc is nor-
mally integrated in the host’s chromosome at the 3′ end of a gene for
tRNAGly (white-green box). Excision occurs through site-specific recombination
between two 18-bp sequences (purple boxes) (39). Note how the stronger
Pcirc promoter faces outward from ICEclc in the integrated form but is placed
upstream of the weaker Pint promoter in front of the intB13 integrase gene
in the excised form (30). The developed ICEclc reporter has an egfp gene
located in the same transcriptional unit as intB13. (B) Upon transfer to a
recipient cell, ICEclc integrates through site-specific recombination in the
reverse process of A. Shown here is the constructed recipient with the con-
ditional trap, consisting of a promoterless mcherry gene downstream of the
integration site. Upon integration, mcherry will be strongly transcribed from
the Pcirc promoter. (C) ICEclc activation is a bistable process arising in tc cells.
Tc cells are characterized by activation of the Pint promoter, which can be
visualized through EGFP fluorescence. Cells with excised ICEclc are expected
to have stronger EGFP expression as a result of the Pcirc promoter. Incoming
ICEclc-intB13-egfp in the recipient may lead to temporary green fluores-
cence for as long as the ICE is in its excised form. When it has been in-
tegrated into the trap, the cell will appear orange because of mCherry
expression (plus the remaining green). (D) Transfer competence is initiated
in stationary phase (stat) cultures but only in a small proportion of cells.
Some individuals transferred from flask to nutrient surface for time-lapse
microscopy (t = 0) will be tc starters; others will be non-tc cells. Upon

renewed cell growth (expo), non-tc cells divide normally to microcolonies,
and, in stationary phase (stat), a proportion of cells again starts the tc de-
velopment (tc formers). tc starter cells divide abnormally and cease growth
earlier than non-tc cells. (E) Starting condition of a tc starter cell (tcs) and
non-tc cells of P. putida ICEclc-intB13-egfp,ΔmfsR 1 h after inoculation on
nutrient surface (EXPO), and the same area with tc formers (tcf) in station-
ary-phase (STAT) microcolonies after 28 h.
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fluorescence signal. The latter appears with a delay, rises more
slowly, and reaches its maximum later. We attribute this
difference to the maturation step required to form the FP
fluorophore26,28.

To quantify this difference more precisely, we measured the
time when half of the maximal nuclear enrichment of each FP
was obtained for each single-cell trace (Fig. 1e, see Methods). At

0.2 M NaCl, with the dPSTR sensor, the majority of cells need
between 10 and 20 min to reach this value, while the half-
maximum of the Venus fluorescence signal is reached later and
with a larger spread (between 30 and 60 min). The delay in
protein production at 0.4 M NaCl relative to the other
concentrations has been attributed to a strong compression of
the cell29. This temporal difference is clearly identified with the
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Figure 1 | Dynamic measurements of protein synthesis with a translocation reporter. (a) A FP is fused to a SynZip (SZ2), expressed under the control of
a constitutive promoter and can freely diffuse between the cytoplasm and the nucleus (dPSTR OFF, top). The induction of the promoter of interest drives
the expression of the second peptide of the reporter, composed of two NLSs fused to a compatible SynZip (SZ1). The strong interaction between the SynZip
peptides leads to the enrichment of the FP in the nucleus (dPSTR ON, bottom). (b) Microscopy images of cells with histone Hta2 tagged with CFP and
carrying the pSTL1-dPSTRR submitted to a 0.2 M NaCl stress. The inducible peptide is fused to a Venus FP. Scale bar, 5mm. (c,d) Quantifications of the
nuclear enrichment in the dPSTRR (c) and the Venus (d) channels for cells stressed with 0 (orange, NC¼ 285), 0.1 (cyan, NC¼ 266), 0.2 (blue, NC¼ 294)
or 0.4 M NaCl (red, NC¼ 265). Nuclear enrichment is measured as the difference between nuclear and cytoplasmic fluorescence for each single cell. For all
similar graphs throughout the paper, the solid lines represent the population average and the error bars are the s.e.m. NC represents the number of single
cells measured. (e) Histograms of the time needed for each single cell to reach half of its expression output for either the dPSTRR (solid lines) or the Venus
(dashed lines). The expression output represents the maximal amplitude of the nuclear enrichment (see Methods). (f) Single cell correlation of the
expression output measured by either the pSTL1-dPSTRR or the pSTL1-Venus assay, for control cells (orange) or cells induced with 0.2 M NaCl (blue). The
dashed lines represent the expression thresholds, above which cells are considered as expressing. All the figures of the paper represent one representative
experiment of at least three biological replicates.
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Budding yeast is an important model organisms in genetics,
molecular biology, systems biology, and synthetic biology.
Almost all current segmentation methods for yeast ima-

ges1–9 rely on classical image processing techniques10 such as
thresholding, edge detection, contour fitting, and watershed.
However, for many experiments, the segmentations produced by
these tools require frequent user interventions. Common chal-
lenges for yeast image segmentation include cell crowding, irre-
gular shapes, transparent inclusions (e.g., vacuoles), unusual
visible features, budding events, and imperfect focus during
imaging (Fig. 1).

CNNs have established themselves in recent years as efficient
and powerful computational models for segmentation tasks11.
CNNs replace sophisticated classical image processing algorithms
with neural-network based models which are trained on a suffi-
ciently large and diverse set of examples12. A key advantage of
CNNs over non-learning based approaches is that in order to
improve the predictions for new cases or conditions, fundamen-
tally new ideas are not needed. In principle, new cells or condi-
tions that the system performs poorly on only need to be included
in sufficient numbers in the training set. We demonstrate this
advantage with clb1-6Δ mutants that create filamentous buds.

Despite the importance of S. cerevisiae as a model organism, to
the best of our knowledge, gold-standard image and segmentation
data sets for yeast or CNNs trained on such data sets do not exist.
Training data in the form of manual annotations of cell masks is
expensive and labor-intensive to generate, especially if it needs to
include mutants, which are important for many laboratories. To
segment accurately, human annotators need experience with yeast
cell images. Furthermore, it is not widely known which of the
many available artificial neural network architectures is suited
best, what the disadvantages of each are, and how they can be
mitigated.

Previous work demonstrated that a CNN can segment yeast
images better than competing methods under very low light
conditions13. However, the training set was focused on the spe-
cific challenge of very low light levels. YeastSpotter, a CNN for
yeast image segmentation based on the Mask-RCNN architecture,
was not trained on yeast images but mostly on human cell
nuclei14. Thus, it is not surprising that many images of yeast cells
cause it to make mistakes (see “Comparison to other methods and
benchmarking”). The bright-field images of diploid yeast cells
published by Zhang et al.15 contain in-focus and substantially
out-of-focus cells in the same field of view, with only the in-focus
cells segmented; it is unclear how well a neural network trained

on this data set could detect out-of-focus buds or segment images
that are slightly out of focus as in Fig. 1. The web resource YIT16
contains high-quality bright-field and phase contrast images of
wild-type yeast cells but only the cell centers are annotated, not
the borders.

Beyond yeast, the approach of DeepCell17, which was applied
to bacterial and mammalian cells and which inspired ours, has
the drawback of requiring an additional fluorescent channel for
segmentation, which we seek to avoid. Experiments may need all
available fluorescent channels for measurements or may involve
optogenetic constructs.

Here, we present a large, diverse data set for yeast segmentation
and an easy-to-train CNN, which we call YeaZ (pronounced: y-
easy). A Python-based graphical user interface (GUI) can be used
to apply the CNN to images in a user-friendly manner, to
visualize the images and the segmentation masks, to apply the
bipartite matching algorithm for tracking8, and to correct
potential mistakes. In order to avoid the need for fluorescent
nuclei marking the cell interiors as in the DeepCell method17, we
seed cells based on peaks of the distance transform and perform a
“cell-cell boundary test” to remove erroneous borders18–21. Using
the YeaZ CNN to measure the cell geometry of hundreds of wild-
type and cyclin mutant cells, we find differences in elongation
which indicate that the mitotic cyclin CLB2 controls cell mor-
phology unexpectedly early and gradually. To assess the suit-
ability of the YeaZ CNN without installing any software, images
can be submitted to a website for segmentation, accessible under
http://www.quantsysbio.com/data-and-software. Users are invited
to submit challenging images for inclusion in the training set,
which thus will expand with time and improve the CNN.

Results
Data set. We segmented >8500 budding yeast cells of strain
background W303, recorded by phase contrast microscopy, semi-
manually using a custom image processing pipeline (Fig. 2,
Supplementary Table 1). In total, this resulted in 384 images
(saved in multi-layer tif files) and corresponding manual anno-
tation masks, which were checked by 1–2 other people. The set
includes normally growing, pre-Start (clnΔ) arrested, filamentous
G1/S (clb1-6Δ) arrested, metaphase (cdc20Δ) arrested, and DNA
damaged cells, some of which are shown in Fig. 1. Cells were
often in large colonies, in which even by eye, cell borders can be
difficult to ascertain. Older and bigger cells contained large,
transparent inclusions, likely vacuoles, which many classical
image segmentation techniques fail to ignore because their edges
look like cell borders. Potentially sick cells with strange visible
features were included (Fig. 1). Cell sizes varied widely fromCell crowding and budding

Previous time index 23 Time index 24 Next time index 25

Unusual
shapes Inclusions Unusual

appearance
Out of
focus

Fig. 1 Challenging cases for the segmentation of yeast images. The red
arrow points to a difficult-to-see new bud that appears in a timelapse
movie. Scale bar: 1 μm. Phase contrast images inverted for better
visualization.

Phase contrast Bright field

Fig. 2 Overview of the YeaZ training data set. Shown are examples of raw
images acquired with phase contrast or bright-field microscopy (upper row)
and corresponding manual annotations (lower row). Phase contrast image
inverted for better visualization. Scale bar: 2 μm.
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Tracking

are valid and biologically relevant in long-lasting experiments.
Incorrect assignments (e.g. two cells exchanged at some time
point) can possibly hide interesting features or worse, create
spurious information. Although such incorrect assignments
are expected to be relatively rare at each time point, a simple
analysis shows that the number of correct traces decreases
rapidly with the duration of the experiment (figure 1).

In the following, we focus on the analysis of microscopy
images of the budding yeast Saccharomyces cerevisiae observed
in brightfield. While fluorescent markers can be used to tag
cellular compartments and significantly ease the image analysis
problem, brightfield imaging circumvents the need for geneti-
cally engineering cells and avoids dedicating one precious
fluorescent channel to find cells’ contours, together with
possible phototoxicity effects coming from fluorescence imaging.

The extraction of cell traces is usually separated into two
distinct tasks: segmentation and tracking. The aim of segmen-
tation is the detection of the areas (technically called
segments) occupied by each cell in each image. Tracking
maps each segment in one image to one (or no) segment in
the following image, so that the history of each cell is recon-
structed over the entire duration of the experiment.
Segmentation and tracking of yeast cells in microscopy
images are widely studied problems [1–14]. Usually, seg-
mentation is obtained through a combination of a few basic
image operations: intensity thresholding, filtering and other
morphological operations [15]. Other classical methods use
region accumulation approaches such as Voronoi-based
methods [16], the watershed transform [17] or deformable-
model approaches such as active contours [18,19]. Methods
and tools for cell segmentation and tracking have been
described in reviews such as [15,20,21].

Nevertheless, yeast single cell segmentation and tracking
are still frequently a technical bottleneck, for example as a con-
sequence of the difficulties in the tuning of image-processing
parameters, the meaning of which is mostly obscure for the
average user. Most of the time researchers resort to home-
made solutions based on semi-automated tracking systems.
Such methods generally fail to robustly recover cell trajectories,
or at best are tailored for a very specific experimental system,
usually relying on additional fluorescent markers or
constrained microfluidic geometry forming cell traps.

In this paper, we present CellStar, a tool chain for the
analysis of videomicroscopy data in which all the steps have
been designed to meet the quality requirements needed for
the analysis of long-term experiments using budding yeast
cells. This has been achieved by the application of iterative
algorithms that incrementally gather information from the
image in order to make cell segmentation and tracking robust
with respect to the most common image analysis errors. In
particular, for segmentation, we use a new variant of active
rays, which exploits information regarding the interior of con-
tours. Active rays, also called polar active contours, are a
computationally efficient framework for the identification of
object outlines in which the contour extraction problem is
defined as an energy minimization problem and contours
belong to a family of parametric curves [22]. For tracking,
we use a multi-criteria optimization algorithm. It notably
includes the penalization of relative displacements between
neighbours proposed by Delgado-Gonzalo et al. [23], which
provides robustness to collective cell movements. The high-
quality results obtained by automatic image processing can
be further improved manually thanks to CellStar’s graphical
user interface (GUI). Manual corrections are also exploited
for automatic parameter learning, which relieves the user of
understanding the trickiest parameters of the algorithms.

Furthermore, we compare CellStar with other seg-
mentation and tracking tools. We developed a manually
curated set of yeast microscopy images to be used as a bench-
mark. Indeed, no consensus has emerged yet on the
best-performing tool, and no systematic analysis of their
performance has been proposed for long-term videomicro-
scopy data. We thus selected images that reflect a diversity
of situations encountered in typical experiments. We com-
pared CellStar with six software solutions dedicated to yeast
cell segmentation and tracking in brightfield microscopy,
namely CellID [1], CellTracer [6], CellSerpent [7], CellX [12],
Tracker [24] and the intensity-based segmentation-overlap-
based tracking (IBSOBT) pipeline for CellProfiler [25] (see
electronic supplementary material, table S2). These tools
have been selected for their representativity, together with
the availability and usability of their implementation. Other
dedicated tools or image analysis platforms could have
been considered [2–5,8,10,11,13,14,26].

In our comparative analysis, we found that CellStar out-
performs the other tools we tested. Naturally, these results
should be interpreted with care because they have been
obtained on data produced in our laboratory and with the
best parametrization we could find for each tool, which
might not be the optimal one. Therefore, this study does
not aim to provide definitive conclusions but rather to
initiate a community effort to compare tools on the same
data. To this end, we additionally set up a companion web-
site, Evaluation Platform, enabling segmentation and tracking
results to be compared and updated when new benchmarks
or new tools become available. CellStar, the Evaluation
Platform and the benchmark dataset are freely available on
the website.

2. Results
2.1. Segmentation
Segmentation is often a key phase of image processing,
during which each image is processed independently with
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Figure 1. Precision decay in long-term tracking. Tracking quality decreases
exponentially with the increase in the number of frames. Assuming that the
probability r of a correct cell assignment (i.e. a cell in one frame corresponds
to the same cell in the previous frame) is constant in time, then the probability
of the trace being correct (i.e. to describe always the same cell) is rðn"1Þ, with
n being the length of the trace (i.e. the number of frames). If the probability of
correctly mapping a cell across two consecutive frames is 99%, then the
probability that a trace spanning 100 frames is correct is only 37%.
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segmenting and tracking cells depends on the quality of the 
recorded video sequences (Fig. 2 and Online Methods).

The image-processing community has addressed the above-
mentioned tasks using increasingly sophisticated segmentation 
and tracking algorithms5–7. We briefly summarize the most com-
monly used methods for segmentation and tracking (Fig. 3).

For cell segmentation, creating a ‘taxonomy of methods’ is not a 
straightforward process, as state-of-the-art methods usually com-
bine different strategies to achieve improved results. We classify 
existing algorithms by three criteria. First, the principle on which 
cells are detected, for example, by finding uniform areas, bounda-
ries or at very low resolution by simply finding bright spots and 
maxima8. Second, the image features that are computed to achieve 
the cell segmentation. These can be simple pixel or voxel intensi-
ties, their local averages, or more complex local image descrip-
tors of shapes or textures. Third, we distinguish the segmentation 
method itself that implements the principle using the features. The 
methods range from simple methods like thresholding9,10, hyster-
esis thresholding11, edge detection12 and shape matching13,14 to 
more sophisticated approaches like region growing15–17, machine 
learning18,19 and energy minimization20–26.

Cell-tracking methods can be broadly categorized into two 
groups. Tracking by contour evolution methods21,22,24,25 start by 
segmenting the cells in the first frame of a video and then evolve 
their contours in consecutive frames, thereby solving the segmen-
tation and tracking tasks simultaneously, one step at a time, under 
the essential assumption of unambiguous, spatiotemporal overlap 
between the corresponding cell regions. Tracking by detection 
methods14,19,26–29, in contrast, start by segmenting the cells in 
all frames of a video and later, using mostly probabilistic frame-
works, establish temporal associations between the segmented 

cells. This can be done by either using a two-frame or multiframe 
sliding window, or even for all frames at once.

The diversity of imaging modalities, cell-tracking tasks and 
available algorithms makes it difficult for biologists to decide 
which algorithm to use under certain conditions. Moreover, the 
developers of image-processing algorithms need to objectively 
evaluate new cell segmentation and tracking solutions by compar-
ing their performance on standardized data sets. We addressed 
these problems by organizing three Cell Tracking Challenges (CTC 
I–III) between 2013 and 2015. For these challenges, we created a 
diverse repository of annotated microscopy videos and defined 
quantitative evaluation measures to allow a fair comparison of the 
competing algorithms30. The participating algorithms were exam-
ined under the challenge conditions. Here we present an in-depth 
analysis of the CTC results, provide useful guidelines for users to 
identify appropriate algorithms for their own data sets and point 
developers to open challenges that we believe are insufficiently 
addressed by the algorithms tested. It is important to note that the 
CTC is an open-source initiative that remains open online, and 
most of the competing methods are publicly available through the 
challenge website (http://celltrackingchallenge.net/).

RESULTS
Data sets and ground truth
The data set repository (Fig. 4, Supplementary Table 1 and 
Supplementary Videos 1–13) consists of 52 annotated videos from 
13 classes, occupying 92 GB of raw image data. Of the 13 data sets, 
11 consist of contrast enhancing (PhC, DIC) or fluorescence (wide-
field, confocal, light sheet) microscopy recordings of live cells and 
organisms in two (2D) or three dimensions (3D). The other two data 
sets are synthetic, generated using a cell simulator that produces 
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Figure 1 | Concept of cell segmentation and tracking. (a) Top, artificial sequence that simulates six consecutive frames of a time-lapse video. The gray 
circles represent cells moving on a flat surface. Middle, the goal of a segmentation algorithm is to accurately determine the regions of each individual 
cell in every frame, constructing a set of binary segmentation masks that correspond to the cells and locate them on a flat background. Bottom, a 
tracking algorithm finds correspondences between the masks, i.e., the cells, in consecutive frames. If properly designed, a tracking algorithm is able 
to detect a moving cell (e.g., C1 or C3) while it is in the field of view, determining when the cell enters and leaves the field of view. From the location 
of the cells in consecutive frames, it is possible to determine the trajectory of each cell and its velocity. A tracking algorithm should also be able to 
detect lineage changes as a result of, for instance, a cell division event (for example, cell C2 divides into two daughter cells, C21 and C22) or apoptosis. 
(b) Graph-based representation of the cell tracks found by a tracking algorithm in the sequence shown at the top of a. Such an acyclic-oriented graph 
contains, for each cell, the time when the cell enters and leaves the field of view, along with its division or apoptotic events. In a real case scenario, 
these graphs show the complete genealogy of the cells displayed in the frame of the video, for the entire length of the video. Please note that the 
orientation of the graph edges follows the temporal sequence starting at t = 0 and moving toward t = 5.

Ulman et al. Nature Methods, 2017
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Fluorescent proteins

Fluorescent proteins have very wide spectra

=> difficult to combine more than 4 in the same experiment


=> Avoid using fluorescence for segmentation

fpbase.org

http://fpbase.org
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Other approaches
Figure 6: Segmentation of a test image using GAC/snakes. Results are shown

at 4 di↵erent stages of the segmentation.
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Goldstein, J Sci Comput (2010)
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Using CellX to
Quantify

Intracellular
Events
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Supplement 101 Current Protocols in Molecular Biology

Figure 14.22.5 Screenshots of image areas of budding yeast cells (left panel, middle panel) and fission yeast
cells (right panel) with membrane profile calibration rays (red arrows) drawn across their membranes. The result is
acquired by execution of step 10 of the protocol. For the color version of this figure, go to http://currentprotocols.
com/protocol/mb1422.

9. Set maximum cell length: Select the Maximum Cell Length Mode (from area C in
Fig. 14.22.2) and draw lines across the major axis of the largest cells on the image
(area A in Fig. 14.22.2) similar to the green lines shown in Figure 14.22.4.

To draw the lines, define the start point by pressing the mouse button and define the end
point by releasing the mouse button. After completing the placement of a line segment
denoting the maximum cell length, an entry will be added in the list next to the Maximum
Cell Length button (found in area C in Fig. 14.22.2). To delete a line segment (e.g., if a
line has length much larger than the largest cells on the image), select the corresponding
entry from the list (a blue rectangle will appear on this line in the image), and press the
Delete or Backspace key on the keyboard.

The maximum cell length is critical for the computational performance of the segmentation
analysis. If the maximum cell length is too large (greater than 300 pixels), this will
significantly slow down the overall process. We advise that you estimate this parameter
as accurately as possible.

10. Train membrane profile: To estimate the membrane profile, draw several membrane
profile rays from the inside of the cell to the outside such that they cross the membrane
perpendicularly. To achieve this, select the Membrane Profile Mode (found in area
C in Fig. 14.22.2) and draw lines on the image (area A in Fig. 14.22.2) similar to the
red arrows shown in Figure 14.22.5. The exact start location of a ray inside the cell
does not matter, but the ray should encompass the complete cell border. It is advised
to draw at least 10 rays distributed over several cells.

A membrane profile ray is the intensity profile of a line segment (ray) that crosses the
membrane perpendicularly, and it is drawn from the inside to the outside of the cell. To
draw membrane profile rays, use the mouse as in step 9. In addition, it is possible to draw
multiple rays at once by pressing the Control or Command key (for 3 rays) or the Control
or Command key plus the Shift or Alt keys (for 12 rays). Upon completing the placement
of a membrane profile ray, an entry will be added in the list next to the Membrane Profile
button (found in area C in Fig. 14.22.2). To delete a membrane profile ray (e.g., if it was
accidentally drawn from the outside to the inside), select the corresponding entry from
the list (a blue rectangle will appear on this ray in the image), and press the Delete or
Backspace key on the keyboard.

11. Trim membrane profile: Select the part of the profile in the membrane profile chart
(area B in Fig. 14.22.2) that roughly corresponds to the membrane. See, for example,
the selected region shown in the upper panel of Figure 14.22.6.

To select a region of the membrane profile, click the chart panel to define the start point
of the signal and drag the mouse to the end point of the signal (i.e., from left to right).
During the process, a blue rectangle will appear denoting the selection. When the mouse
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Figure 14.22.6 Screenshot of the membrane chart. Left panel: Selection of the part of the signal that
corresponds to the membrane. Right panel: The sub-region of the profile with the membrane offset and width
adjusted. The result is acquired by execution of step 11 of the protocol.

button is released at the end point, the membrane profile chart will be updated, and it will
only show only the part of the membrane profile that was selected.

To change a selection, first click the chart panel, and then drag the mouse in the opposite
direction (i.e., from right to left). The membrane region will be reset to the initial membrane
profile. Repeat the process and select a different membrane region.

12. Set membrane location: Set the Membrane Location in the membrane profile by
left-clicking into the membrane profile chart (area B in Fig. 14.22.2).

In the example shown in Figure 14.22.6, the location of the membrane corresponds to
a point between the minimum and maximum values displayed in the lower panel of the
figure. The membrane location should be an estimate of the outer membrane point. This
parameter is usually best adjusted upon visible inspection of the segmentation result in
a quantification control image that shows the cell’s estimated boundaries (see optional
step 15—Add quantification Image(s) for Test Segmentation—and lower-right panel in
Fig. 14.22.7).

13. Set membrane width: Set the Membrane Width in the General Parameters table (area
D in Fig. 14.22.2). The horizontal line associated with the membrane location in the
membrane profile chart (area B in Fig. 14.22.2) indicates the width of the membrane.

Next to the field Membrane Width in the General Parameters table (area D in Fig. 14.22.2),
there is a default value of this parameter. It can be changed by double-clicking on the
existing value and writing a new one. As in step 11, a quantification control image that
provides a readout of the membrane width helps in adjusting this parameter. If such an
image is not available, set the value intuitively based on the cell size or other prior
biological knowledge.

Mayer et al. Current Protocols in Molecular Biology 
2001
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Artificial Intelligence
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Figure 1: A snapshot of two root-to-leaf branches of ImageNet: the top row is from the mammal subtree; the bottom row is from the
vehicle subtree. For each synset, 9 randomly sampled images are presented.
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Figure 2: Scale of ImageNet. Red curve: Histogram of number
of images per synset. About 20% of the synsets have very few
images. Over 50% synsets have more than 500 images. Table:
Summary of selected subtrees. For complete and up-to-date statis-
tics visit http://www.image-net.org/about-stats.

images spread over 5247 categories (Fig. 2). On average
over 600 images are collected for each synset. Fig. 2 shows
the distributions of the number of images per synset for the
current ImageNet 1. To our knowledge this is already the
largest clean image dataset available to the vision research
community, in terms of the total number of images, number
of images per category as well as the number of categories 2.

Hierarchy ImageNet organizes the different classes of
images in a densely populated semantic hierarchy. The
main asset of WordNet [9] lies in its semantic structure, i.e.
its ontology of concepts. Similarly to WordNet, synsets of
images in ImageNet are interlinked by several types of re-
lations, the “IS-A” relation being the most comprehensive
and useful. Although one can map any dataset with cate-

1About 20% of the synsets have very few images, because either there
are very few web images available, e.g. “vespertilian bat”, or the synset by
definition is difficult to be illustrated by images, e.g. “two-year-old horse”.

2It is claimed that the ESP game [25] has labeled a very large number
of images, but only a subset of 60K images are publicly available.

ESP Cattle Subtree Imagenet Cattle Subtree
176

Imagenet Cat SubtreeESP Cat Subtree

1377

376

1830

Figure 3: Comparison of the “cat” and “cattle” subtrees between
ESP [25] and ImageNet. Within each tree, the size of a node is
proportional to the number of images it contains. The number of
images for the largest node is shown for each tree. Shared nodes
between an ESP tree and an ImageNet tree are colored in red.

gory labels into a semantic hierarchy by using WordNet, the
density of ImageNet is unmatched by others. For example,
to our knowledge no existing vision dataset offers images of
147 dog categories. Fig. 3 compares the “cat” and “cattle”
subtrees of ImageNet and the ESP dataset [25]. We observe
that ImageNet offers much denser and larger trees.

Accuracy We would like to offer a clean dataset at all
levels of the WordNet hierarchy. Fig. 4 demonstrates the
labeling precision on a total of 80 synsets randomly sam-
pled at different tree depths. An average of 99.7% preci-
sion is achieved on average. Achieving a high precision for
all depths of the ImageNet tree is challenging because the
lower in the hierarchy a synset is, the harder it is to classify,
e.g. Siamese cat versus Burmese cat.

Diversity ImageNet is constructed with the goal that ob-
jects in images should have variable appearances, positions,

ImageNet 80’000 “words” 500-1000 images per word

from 30% errors to 3% error in 6 years
J. Deng et al. IEEE Computer Vision and Pattern Recognition, 2009

Testing GoogLeNet…

• Large diversity in images improves training

• Great increase in accuracy from Neural Networks



Neural network
U-Net: Convolutional Networks for Biomedical Image Segmentation 235

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [2] has two drawbacks. First, it is quite
slow because the network must be run separately for each patch, and there is a lot
of redundancy due to overlapping patches. Secondly, there is a trade-off between
localization accuracy and the use of context. Larger patches require more max-
pooling layers that reduce the localization accuracy, while small patches allow
the network to see only little context. More recent approaches [11,4] proposed a
classifier output that takes into account the features from multiple layers. Good
localization and the use of context are possible at the same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled
output. A successive convolution layer can then learn to assemble a more precise
output based on this information.

U-Net

Ronneberger et al. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 2015

23 Layers:

• convolution

• pooling 

• Rectified Linear Unit (ReLU)
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Neural network
Manual training:  example

Data augmention

YeaZ:  

8’500 segmented yeast cells

Including mutants

Trained on phase contrast images

 

ImageNet: 

Amazon mechanical turk:  
49’000 people during 3 yearsGenerally, Wood et al.’s method tended to oversegment, i.e.,

subdivide cells erroneously. YeastSpotter tended to miss cells.
To find out how low the error rate of the YeaZ CNN may be,

we analyzed the entire data sets 9 and 10 from ref. 16. The
resulting segmentations were flawless for data set 9 for all 1596
cells except for four buds; tiny buds of a few pixels were detected
early except for four (Supplementary Fig. 8), which were detected
at the next time point when they were slightly bigger. The error
rate is thus 0.25%. For data set 10, all 484 cells were segmented
accurately (error rate: 0%); however, we remark that the images in
data set 10 are very similar to each other.

Thus, on images from us and others that are challenging for
other methods, YeaZ produced ground-truth level segmentations.

To complement this analysis with a mathematical comparison,
we also scored all three methods, YeaZ, YeastSpotter, and Wood
et al., computationally. We took 17 semi-manually segmented
phase contrast images containing 1894 wild-type cycling cells,
which were not included in the training set for the YeaZ CNN,
and computed standard segmentation metrics such as accuracy
and mean intersection-over-union (IoU)23 (Fig. 5). The YeaZ
CNN performed very well (mean accuracy: 94%) with most of the
missed cells being small buds that the CNN delimited differently
than the human annotators. Given that many of these buds
spanned only a few pixels (see Supplementary Fig. 8 for examples
of small buds), it was easy for two slightly different segmentations
to differ by the 50% threshold for the accuracy metric—without
the bud actually having been missed or clearly incorrectly
segmented. By both metrics, YeastSpotter showed a substantially
higher error rate than the other methods. Wood et al.’s method
performed better than YeastSpotter on this set of images (mean
accuracy: 79%). (Similarly, among the three test images in Fig. 4,
Wood et al. had performed reasonably well for wild-type cycling
cells (middle row).)

Expanding the capabilities of the CNN. In order to gauge the
adaptability of the CNN to new cell shapes, we trained it with and
without approximately 50 filamentous clb1-6Δ cells growing in
different colonies. We then tested the CNN on another image from

a later time point of one of the scenes, when the filamentous cells
had grown substantially longer (Fig. 6). Importantly, these longer
cells were not broken up by the CNN trained on the expanded data
set. Note that these colonies can be very difficult to segment by eye
in the places where cells are crowded; thus, the mistakes that are
made when strangely shaped mutant cells surround and partially
overlap each other as in the bulk in Fig. 6 may be expected, given
the number of clb1-6Δ mutants in the training set.

One solution to minimize the manual labor required to expand
the training set is to proceed iteratively: segment a few images
under a new condition, retrain the neural network with these
images, and repeat with an improved neural network until the
performance is acceptable.

Graphical user interface (GUI). To apply the CNN and the
tracking algorithm and correct their mistakes, we designed a
Python-based GUI (Fig. 7). New cells can be drawn, modified
after segmenting with the CNN, and cells can be relabeled. We
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Fig. 5 Detailed computational comparison of all methods. The evaluations were carried out on 17 test images of 1894 cycling wild-type cells not included
in the YeaZ training set. a Each row shows an example test image, its ground-truth annotation (GT), and the result of Wood et al.9, YeastSpotter14, and
YeaZ, respectively. b Quantification of segmentation performance of all methods. As is common in the computer vision literature, we call a predicted cell a
true positive (TP), if its intersection over union (IoU) with the corresponding ground-truth (GT) cell is larger than or equal to 50%. Similarly, false positives
(FPs) and false negatives (FNs) are defined as predictions that have no GT match and vice versa. As segmentation metric, we show the average accuracy
( TP
TPþFPþFN) and average intersection-over-union of true positives (IoU). Boxes show interquartile ranges (IQR), lines signify medians, and whiskers extend
to 1.5 IQR. Scale bar: 5 μm.

Before including
mutants

After including
mutants

Fig. 6 Adaptability of the CNN. clb1-6Δ mutants were either excluded
(left) or included (right) in the training set for the CNN, which was then
tested on an image of clb1-6Δ cells from a later time point with even longer
filaments, shown here. Note that the color of each cell is dependent on the
internal numbering and therefore arbitrary. However, there are no
fragmented filamentous cells on the right (green check marks) although
there are segmentation errors when the strangely shaped cells are crowded
(red arrow). Phase contrast image inverted for better visualization. Scale
bar: 2 μm.
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3D segmentation. Our last contribution was to generalize Cellpose 
for 3D segmentation. This task usually requires 3D training data, 
which is much more difficult to obtain than 2D training data as it 
requires one 2D segmentation for every slice in the volume. Thus, 
a cell that spanned 30 pixels, the median diameter in our dataset, 
would take 30 times longer to manually segment in 3D. An alterna-
tive approach would be to extend pretrained, generalist 2D models 
to 3D by running the neural networks on every 2D slice. The 3D 
segmentation step that would follow is straightforward for some 
models such as the U-Nets, where the postprocessing step of finding 
connected components can be performed similarly in 3D and 2D.

However, this type of extension is not available for models with 
more complex postprocessing steps, such as Cellpose, Stardist and 
Mask R-CNN. We therefore designed a new method for extending 
Cellpose to 3D, using only the trained 2D model and no additional 
3D training data. For a test volume, we ran Cellpose on all xy, xz and 
yz slices independently (Fig. 6a,b). For each point, this procedure 
generated two estimates of the gradient in x, y and z (that is, six total 

predictions), which we then averaged together to obtain a complete 
set of 3D vector gradients. To generate ROI, we then ran the gradi-
ent vector tracking step in 3D, followed by a clustering of pixels that 
converge to the same fixed points (Fig. 6e).

We compared Cellpose3D to the 3D extensions of the 2D U-Net 
models (Fig. 6e). We also compared against a different 3D approach 
of ‘stitching’ together sequential 2D segmentations from each xy 
plane. This approach can be applied to any 2D method, including 
the generalist Stardist and Mask R-CNN models. Finally, we used 
ilastik to generate a 3D segmentation pipeline specific for this vol-
ume. The parameters of ilastik were chosen manually to give good 
performance on a subset of the volume that was not used for testing. 
Like Cellpose3D, ilastik did not require a large 3D training dataset, 
and thus can be trained and deployed easily by nonexperts.

We evaluated the performance of Cellpose3D and the other 
models on a manually annotated 3D test volume in which the DNA 
and RNA were costained to serve as nuclear and cytoplasmic mark-
ers, respectively (Fig. 6f). The human annotator found 183 cells, 
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Fig. 3 | Example Cellpose segmentations for 36 test images. The masks predicted by Cellpose are shown with dotted yellow lines. Compare these to the 
Stardist and Mask-R-CNN in Extended Data Figs. 4 and 5.
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Conclusions

Other uses of AI in image analysis:

• data improvements

• classification

Manual segmentation 
- Precision but low throughput

Algorithmic segmentation 
- High throughput

- No perfect algorithm

- Lacks flexibility

AI-based segmentation 
- High throughput

- Impressive performance

- Manual training!
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