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Motivation: The Case of
Merkel Cell Carcinoma

Increasingly common skin cancer

Very aggressive: twice as likely to
metastasize as melanoma

80%+ of cases are caused by a
virus (Merkel cell polyomavirus)

Very difficult to treat until recently

11/12/21

Single-cell revieV

MCC Incidence in US
(# Cases)

2000 2005 2010 2015 2020 2025
Year




o2 U.S. FOOD & DRUG

ADMINISTRATION

AtoZIndex | Follow FDA En Espafiol

Drugs

Home | Food | Drugs | Medical Devices | Radiation-Emitting Products | Vaccines, Blood & Biologics | Animal & Veterinary | Cosmetics | Tobacco Products

Home > Drugs > Drug Approvals and Databases > Approved Drugs

Approved Drugs

Hematology/Oncology (Cancer)
Approvals & Safety Notifications

Drug Information Soundcast in
Clinical Oncology (D.1.S.C.0.)

Approved Drug Products
with Therapeutic
Equivalence Evaluations
(Orange Book)

FDA approves pembrolizumab for Merkel cell
carcinoma
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On December 19, 2018, the Food and Drug Administration granted accelerated approval to pembrolizumab
(KEYTRUDA, Merck & Co. Inc.) for adult and pediatric patients with recurrent locally advanced or metastatic
Merkel cell carcinoma (MCC).

Approval was based on Cancer Immunotherapy Trials Network protocol 9 (CITN-09), also known as KEYNOTE-
017 (NCT02267603), a multicenter, non-randomized, open-label trial that enrolled 50 patients with recurrent
locally advanced or metastatic MCC who had not received prior systemic therapy for their advanced disease.
Patients received pembrolizumab 2 mg/kg every 3 weeks.

The major efficacy outcome measures were overall response rate (ORR) and response duration assessed by
blinded independent central review per RECIST 1.1. The ORR was 56% (95% CI: 41, 70) with a complete
response rate of 24%. The median response duration was not reached. Among the 28 patients with responses,

0R% had reenonee duratione of areater than 6 monthe and 54% had reenonece duratione of areater than 12
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60 year old man with metastatic Merkel cell carcinoma, virus positive

* Has HLA-B*3502 restricted T cells recognizing an epitope of the Merkel cell
polyomavirus

* Receives T cell therapy and 2 immune checkpoint inhibitors
* Has an initial impressive partial response of >1 year, but then progression.

e At time of progression, has antigen (MCPyV positive tumor) and persistent T
CE”S recogniZing MCPyg‘AgIe—cellrevieW 5



“Bulk” (e.g. RNA-
seq) profiling
cannot reveal

within tissue
heterogeneity




RNA-seq limitations
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Cell type-specific gene
expression differences
in complex tissues

Shai S Shen-Orr!»210, Robert Tibshirani®%!19,

Purvesh Khatril, Dale L Bodian®?, Frank Staedtler®,
Nicholas M Perry’, Trevor Hastie>, Minnie M Sarwal'?2,
Mark M Davis?%10 & Atul J Butte1°

We describe cell type-specific significance analysis of
microarrays (csSAM) for analyzing differential gene expression
for each cell type in a biological sample from microarray data
and relative cell-type frequencies. First, we validated csSAM
with predesigned mixtures and then applied it to whole-blood
gene expression datasets from stable post-transplant kidney
transplant recipients and those experiencing acute transplant
rejection, which revealed hundreds of differentially expressed
genes that were otherwise undetectable.

Traditional microarray analysis methods are oblivious to sam-
ple cell-type composition. They can neither distinguish between

BRIEF COMMUNICATIONS |

constituting cell subsets is unclear. This prevents assessment of
the accuracy of deconvolution-derived profiles, their widespread
application and development of such statistics-based techniques.

We tested the relationship between measured gene expression
in mixed samples and the expression of genes in the isolated pure
subsets, in a situation in which all factors are known. We analyzed
tissue samples from the brain, liver and lung of a single rat in isola-
tion (referred to as ‘measured pure tissue’) as well as in ten different
mixture ratios (referred to as ‘measured mixtures’; Supplementary
Table 1) using Affymetrix expression arrays (Online Methods).
Such mixtures mimic the common scenario in which biological
samples in a dataset are heterogeneous and vary in the relative
frequency of the component subsets from one another.

Next, we reconstituted mixture sample expression profiles by multi-
plying the measured pure tissue expression profiles by the frequency
of the tissue subset in a given mixture sample. Overall, experimentally
measured mixture data had high correlation with the reconstituted
mixture data (7> 0.95; Supplementary Fig. 1). Probes for which data
deviated from the diagonal comprised only a small fraction of the
probes up to a twofold expression change cutoff (Supplementary
Fig. 2); these probes were more abundant in experimentally mea-
sured mixtures than in reconstituted samples, likely because of
nonlinear biases in sample amplification and normalization pro-
cedures or probe cross-hybridization (Supplementary Note 1,

variations in gene expression resulting from an actual pgpﬁgq)ég&;“ rejupplementary Fig. 3 and Supplementary Table 2).
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Computational deconvolution

(a) Partial deconvolution using available signatures (b) Partial deconvolution using available proportions
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Computational deconvolution

(c) Complete deconvolution from global expression

Gene Group cell type—specific Cell-type G=FxC + € (infer F and C). Need additional constraints.
®3pression expression profies TaCEny Can be done, e.g., via non-negative matrix factorization or

Bayesian modeling, to name a few methods.
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A large number of available tools

csSAM: General method for cell-type specific differential expression. (Shen-Orr et al. Nat. Methods
2010)

e EPIC: Estimating the Proportion of Immune and Cancer cells from bulk tumor gene expression data
(Racle et al.,eLife 2017).

* CIBERSORT: Many types of immune cell reference profiles (Newman et al. Nat Meth. 2015).
* TIMER: Main immune cell types (Li et al. Genome Biology 2016).

 MCPcounter: Immune + stromal cells, good performance, but results not comparable across different
cell types (Becht E et al. Genome Biology 2016).

* CellMix package in R is a good resource (Gaujoux and Seoighe, Bioinformatics 2013)

Many of these algorithms have now improved given the large number of gene expression signatures in
the public domain (including single-cell level data).



Bulk vs. single-cell

While deconvolution can be
done, it fails when the cell-
type proportions are small

and/or cell types not well
defined.

Hard to taste 1-2 blueberries in
a smoothie or tell that there
are raspberries (if you’ve never

Bulk RNA-seq Single-cell RNA-seq tasted a raspberry).
(~2008) (~2014)

b !

m'ﬁf‘_‘h:

11/12/21 Single-cell review 12



Single-cell analysis

Cell
suspension - — —

Tissue
dissociation
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Quantify RNA and/or
protein in each single-cell
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The progression of sing
over time (much simpli

e-cell technologies

edl!)

Thousands of genes, thousands of cells/sample

SsciRNA-seq

Drop-seq

Thousands of genes, 1 cell Well-seq
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Single-cell analysis: Two main technologies

Throughput Cost Dimensionality Pros Cons
Flow cytometry Very high Low (<.1S/cell) | 15-50 proteins Standardized, Limited number
= (100,000 to Targeted, Sorting of proteins
- millions)

scRNAseq (and
variants)

10x Genomics
split-seq
sciRNA-seq, etc

High (10°000s
cells)

High (~1S/cell)

High (1000s of genes)

High-dimensional, no
need to select genes.
Can now be
combined with
protein/epigenomics

Still expensive,
much slower,
more noisy

The two technologies are complementary!
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Deep Immune
orofiling via single-cell
cytometry
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Manual analysis is still the gold standard

CD8+/CD4-
CD3+ (T-Cells)
(T-Cells)

CD4+/CD8-
(T-Cells)




The FAUST algorithm

* Interpretable machine learning approach

« Unambiguously finds all cell populations in a
data-driven manner

High

« Complete phenotypic annotations and cell _ _
counts for biomarker screening, e.g. CD3+/CD4- Protein expression
/CD8+/PD1 Dim

» Robust to biological and technological
heterogeneity ( ?

 Compares favorably to many other competin
approa%hes (e.g. PheynographyﬂowSOM)p J ‘* *b .& ‘* &

* (Greene et al. Patterns 2021)

Evan Greene
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Analysis tools for cytometry analysis and
standardization from our lab

1. Finak, G., Jiang, W., Gottardo, R., 2018. CytoML for
cross-platform cytometry data sharing. Cytometry A 93,
1189-1196.
2. Van, P, Jiang, W., Gottardo, R., Finak, G., 2018.
|;|i % oﬁ ggCyto: Next Generation Open-Source Visualization
o Software for Cytometry. Bioinformatics.
https://doi.org/10.1093/bioinformatics/bty441
LARGE OPENCYTO SUITE AUTOMATED GATING 3. Finak et al. StandardiZing Flow Cytometry
INFRASTRUCTURE TO (HDF5, FLOWJO Immunophenotyping Analysis from the Human

MANIPULATE AND INTEROPERABILITY, . . . ‘pn
PREPROCESS FLOW VISUALIZATION, ETC) ImmunoPhenotyping Consortium. Scientific Reports

CYTOMETRY DATA IN R (2016).

AND BIOCONDUCTOR 4. Lin et al. COMPASS identifies T-cell subsets correlated
III _2, with clinical outcomes. Nat. Biotech. (2015)
. Ce] 5. Lin et al. Identification and Visualization of
Multidimensional Antigen-Specific T-Cell Populations in
CTATISTICAL CUNDED BY NIH ROL Polychromatic Cytometry Data. Cytometry A (2015).
MODELING OF CELL METHODS GRANT 6. Finak, G. et al. OpenCyto: An Open Source
COUNTS Infrastructure for Scalable, Robust, Reproducible, and
Automated, End-to-End Flow Cytometry Data Analysis.
PLoS CB (2014).
7. Aghaeepour, N. et al. Critical assessment of automated
flow cytometry data analysis techniques. Nat. Methods
(2013).
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Anupdated guide for the perplexed: cytometry in the
high-dimensional era

Thomas Liechti, Lukas M. Weber, Thomas M. Ashhurst, Natalie Stanley, Martin Prlic, Sofie Van Gassen &
Florian Mair ™

Nature Immunology 22, 1190-1197 (2021) | Cite this article

9411 Accesses | 78 Altmetric | Metrics

High-dimensional cytometry experiments measuring 20-50 cellular markers have
become routine in many laboratories. The increased complexity of these datasets
requires added rigor during the experimental planning and the subsequent manual
and computational data analysis to avoid artefacts and misinterpretation of results.
Here we discuss pitfalls frequently encountered during high-dimensional cytometry
data analysis and aim to provide a basic framework and recommendations for
reporting and analyzing these datasets. Single-cell review
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10x Barcoded
Gel Beads

10x Genomics
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Single cell 3" mMRNA-seq
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 UMI: Unique molecular
identifier

— Enable counting of unique molecules

— Normalize for PCR biases

- 3’ sequencing: Can only quantify gene
expression, no alternative splicing

- 5’ sequencing can also be used to infer
T/B cell receptors

24



From a single-cell to one million cells!

FROM ONE TO MILLIONS

Biologists can now analyse RNA transcripts or chromatin accessibility Rozenblatt_ ROsen O
in thousands or even millions of individual cells in parallel. r =
Stubbington, M.J.T,,
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Challenges in single-cell genomics

* Technical issues
* Unwanted cell-to-cell variability
* Assay failure (e.g. due to cell capture, RNA extraction), empty droplets, etc
* Batch effects (Experimental design)

* Bi-modality
* A gene can be off or on at the single-cell level. Standard statistical models might not be
appropriate
e Data are sparse (lots of zeros)

* Large datasets

* Possibly thousands of genes in thousands of cells with complex designs. Pay attention to
computational implementations.



Common computational problems

* Alignment and gene expression quantification
* Normalization and batch effect correction

* Dimension reduction

* Clustering and cell annotation

e Differential gene expression

* Trajectory analysis



Methods/tools for single-cell genomics from

our lab

 Optimization of primers Filtering criteria
for cells/probes

e Statistical model for zero-inflated
distributions (bimodality)

* Gene-set enrichment analysis

e Support for multiple single-cell
platforms (Fluidigm, NanoString, 10X)

 Tools development within Bioconductor

Hao, Y et al. 2021. Integrated analysis of multimodal single-
cell data. Cell 184, 3573—-3587.e29.

Amezquita, ..., Gottardo, R., Hicks, S.C., 2020. Orchestrating
single-cell analysis with Bioconductor. Nat. Methods 17, 137—-
145.

Mair, F., Erickson, J.R., Voillet, V., Simoni, Y., Bi, T., Tyznik,
A.J., Martin, J., Gottardo, R., Newell, E.W., Prlic, M., 2020. A
Targeted Multi-omic Analysis Approach Measures Protein
Expression and Low-Abundance Transcripts on the Single-
Cell Level. Cell Rep. 31, 1074909.

McDavid, Finak, and Gottardo The Contribution of Cell Cycle
to Heterogeneity in Single-Cell RNA-Seq Data. Nature
Biotechnology (2016).

Finak, G. et al. MAST: A Flexible Statistical Framework for
Assessing Transcriptional Changes and Characterizing
Heterogeneity in Single-Cell RNA-Seq Data. Genome Biology
(2015).

McDavid, A. et al. Modeling bi-modality improves
characterization of cell cycle on gene expression in single
cells. PLoS CB (2015).

McDavid, A. et al. Data exploration, quality control and testing
in single-cell gPCR-based gene expression experiments.
Bioinformatics 29, 461-467 (2013).



Environments for data analysis

Python R

Monocle

ScanPy Bioconductor

Seurat
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Orchestrating single-cell analysis with Bioconductor

Robert A. Amezquita®™’, Aaron T. L. Lun?', Etienne Becht', Vince J. Carey?, Lindsay N. Carpp @',
Ludwig Geistlinger*®, Federico Marini©%7, Kevin Rue-Albrecht ©8, Davide Risso®°,

Charlotte Soneson®"2, Levi Waldron©45, Hervé Pagés', Mike L. Smith©", Wolfgang Huber®,
Martin Morgan'?, Raphael Gottardo™ and Stephanie C. Hicks ©*

Recent technological advancements have enabled the profiling of a large number of genome-wide features in individual cells.
However, single-cell data present unique challenges that require the development of specialized methods and software infra-
structure to successfully derive biological insights. The Bioconductor project has rapidly grown to meet these demands, host-
ing community-developed open-source software distributed as R packages. Featuring state-of-the-art computational methods,
standardized data infrastructure and interactive data visualization tools, we present an overview and online book (https://osca.
bioconductor.org) of single-cell methods for prospective users.

munity of developers and users from diverse scientific fields,

driving the development of open-source software packages
using the R language for the analysis of high-throughput biological
data’*. While bulk profiling technologies have yielded important
scientific insights and methods’~’, recent advancements in sequenc-
ing technologies to profile samples at single-cell resolution have
emerged that can answer previously inaccessible scientific ques-
tions'~*. Bioconductor has been home to a wide range of software
packages used in analyzing bulk profiling data, and more recently it
has expanded significantly into the realm of single-cell data analy-
sis with a rapidly growing list of community-contributed software
packages (Fig. 1).

f ince 2001, the Bioconductor project’ has attracted a rich com-

single-cell RNA-seq (scRNA-seq) data, much of the concepts men-
tioned are also generalizable to other types of single-cell assays. We
cover data import, common data containers for storing single-cell
assay data, fast and robust methods for transforming raw single-cell
data into processed data suitable for downstream analyses, inter-
active data visualization, and downstream analyses. To help users
leverage this robust and scalable framework, we describe selected
packages and present an online book (https://osca.bioconductor.
org) covering installation, sources of help, specialized topics per-
taining to specific aspects of scRNA-seq analysis and complete
workflows analyzing various scRNA-seq datasets. The references
for all packages are available at http://bioconductor.org/packages/.

Current single-cell assays can be both high-throughput, e3¢ Batainfrastructure

ing thousands to millions of cells, and high dimensional, measur-

One of Bioconductor’s strongest advantages is the availability of

30



Bioconductor — Open Source Software for

Bioinformatics in R

e Builtinand forR

* Focused on the analysis of
genomic data, with a rich
history of software and
methods development that has
spanned the era of sequencing

Number of Packages

300 A
200 -
100 A

O ] ] ] 1

B
@Q\Q’ Q/()\ @Q\6 @0\%
Transcriptomic-Seq [} Single Cell Epigenomic-Seq Microbiome Genomic-Seq
(RNA-seq, miRNA-seq) (scRNA-seq) (ChIP-seq, HIC, (16S rRNA-seq, (Exome-seq, WGS)

DNase-seq, Methyl-seq) Metagenome-seq)
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Primary

Quality control,

Downstream

data

normalization,
feature reduction

statistical

Overall Framework for Analysis of scRNA-seq

iInput

analysis

Typically done outside of R, e.g. CellRanger, kallisto

Matrix object in base R

Sparse or dense matrix

File-backed matrices (e.g. HDF5)

We can read 10X data into a SingleCellExperiment using
the DropletUtils package

¥
SingleCellExperiment object

{

Common data model used by most packages

Gene and cell quality control normalization

Feature selection

Dimensionality reduction

Batch correction and integrating datasets

e.g. scater, zinbwave

e.g. scran, scFeaturefFilter
e.qg. scater, destiny

e.g. scMerge, batchelor

{

Clustering

Trajectory analysis

Differential expression

Annotation (gene signatures, ontology)

Interactive data visualization

| e.g. BiocNeighbors, SC3
e.q. slingshot, TSCAN
e.g. MAST, SCDE, muscat
e.g. MAST, singleR
[ "eg. TSEE ”




Gene expression quantification



Alignment and quantification — Overview

* First step of any analysis is to align reads to a reference genome to
quantify transcript/gene expression for each gene within each cell

 The reference genome will typically be specific for your study (e.g.
human/mouse, etc) and might include additional
sequence/annotations for quantifying non-host expression (e.g. viral
genes, CAR T gene, spike-in controls)

* Large number of available tools for sequence alignment and
guantification (e.g. CellRanger, kalisto (Bray et al. Nat. Biotech.
2016))



Introducing the SingleCellExperiment class

A fully annotated/processed sce object

An S4 class object used to store the primary ) ) (¥ . T el W_H
data, data transformations, and metadata | |
associated with a single-cell experiment or
collection thereof

Arranges the data into specialized sub- |assas o i
containers called s/ots, which can be - ’
accessed via standardized accessor functions
that allow for creation of, modification, and
supplementation of (meta)data

Y Y

rowData(sce) colData(sce)| |sizeFactors(sce)

Y

library(SingleCellExperiment) reduceddim(sce, “TSNE")

sce <- SingleCellExperiment(...)
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Infrastructure Matters: Why SmgleCeIIExperlment

IS Awesome

Ability to analyze across a universe of Bioconductor
packages

The consistent, extensible interface makes it possible for
plethora of packages with various objectives to work with
one another in a workflow, from reading in raw data to
normalization to visualization

This is why a singular workflow is possible that for
each step can leverage various Bioconductor tools
(where each tool has been individually tested, peer-
reviewed, and published)

Conversion to other types of containers is possible as
well to Monocle’s CellDataSet and Seurat’s
SeuratObject

celaref
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scmeth «_ \ cran O/ ‘;‘ ‘-“.’.;. Trails diffcyt
' sw‘:leCel 1K -
— netgmnt}' () oscater  CATALYST
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BASICS zinpssave = CellMixS g

counts |mO" ] slingshgt. ;2 ) phenopath sak,m

Lo mExoenm : = «‘cr‘dc.m‘r P
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fishy pond _
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ePL. se
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scmap v/ ~ -
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Nt | ” 1 { " v,,,‘ -

FeatureFilter — ' ()
) scAlign O EcBr -

DEsingle

scruff

scPipe CHETAH Sciind

Packages which have a dependency on the

SingleCellExperiment class

https://seandavi.github.io/2019/05/
single-cell-packages-and-dependencies-in-bioconductor-using-biocpkgtools/
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Dimensionality reduction



Dimensionality reduction — Overview

 Basic idea: Reduce the number of variables while retaining most of
the (biological) information in the original dataset

 Feature down-selection: Basic filtering of non-informative genes,
e.g. zero expression values or low variability

* Data transformation and compression: Define a minimal set of new
variables that maximize information content. Transformation can be
linear and non-linear (e.g. PCA, tSNE)



Principal component analysis

 Capture the intrinsic variability in the data.

 Reduce the dimensionality of a data set, either to ease
interpretation or as a way to avoid overfitting and to prepare for
subsequent analysis.

* Linear, so principal components (PC) can be more interpretable
(compared to non-linear approaches t-SNE)

* Not efficient for capturing non-linear structures

 More than 2 PCs might be needed for efficient compression



Principal component analysis — Toy example

\ Feature 2

12l oo

Linear transformation
Simple rotation of the coordinate system

Column vector X2

Column vector X 4

https://onlinecourses.science.psu.edu/stat857/node/35
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t-Distributed Stochastic Neighboring
Embedding

Non-linear dimensionality reduction
Originally developed by van der Maaten and Hinton

Became popular for single-cell analysis when applied to CyTOF data
(VISNE, Amir et al. 2013)

Efficient data compression even with 2 components

Sensitive to initial values and tuning parameters. Different runs can
output very different plots

t SNE dimensions and distances are not interpretable
Generally speaking, the resulting structure is fairly robust
https://distill.pub/2016/misread-tsne/



tSNE intuition

X observed (high-dimensional) data
Y lower dim representation

exp(—||x; — x;|*/207)
2 iz exP(—lxi — xi[|?/207)

Pji =

11/12/21

Approximate

By minimizing the KL divergence

KL(P|Q) =Y i 1g§_

Single-cell review
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qij =
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tSNE vs. PCA — Example

MCC project

Data normalized and unwanted sources of variation (nUMI) are removed - Seurat Analysis

tSNE 2

11/12/21

o After
© Before

Single-cell review

PC2

o After
© Before

PC1

PCA
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Dimensionality reduction for visualizing single-cell data

using UMAP

Etienne Becht!, Leland McInnes?®, John Healy?, Charles-Antoine Dutertre!, Inmanuel W H Kwok],

Lai Guan Ng!, Florent Ginhoux!® & Evan W Newelll»3¢

Advances in single-cell technologies have enabled high-
resolution dissection of tissue composition. Several tools

for dimensionality reduction are available to analyze the

large number of parameters generated in single-cell studies.
Recently, a nonlinear dimensionality-reduction technique,
uniform manifold approximation and projection (UMAP), was
developed for the analysis of any type of high-dimensional
data. Here we apply it to biological data, using three well-
characterized mass cytometry and single-cell RNA sequencing
datasets. Comparing the performance of UMAP with five
other tools, we find that UMAP provides the fastest run times,
highest reproducibility and the most meaningful organization
of cell clusters. The work highlights the use of UMAP for
improved visualization and interpretation of single-cell data.

The past decades have witnessed a large increment in the number
of parameters analyzed in single-cell cytometry and transcriptome
studies. Parameter numbers currently reach ~20 for flow cytometry,
~40 for mass cytometry and >20,000 in single-cell RNA sequencing
(scRNAseq). Dimensionality reduction techniques have been pivotal
in enabling researchers to visualize high-dimensional data. Although
principal component analysis (PCA) has historically been the most
commonly used method for dimensionality reduction, the impor-
tance of nonlinear dimensionality reduction techniques has recently
been recognized. Nonlinear dimensionality reduction techniques are,
notably, able to avoid overcrowding of the representation, wherein
distinct clusters are represented on an overlapping area. Nonlinear
dimensionality reduction methods! include Isomap?, Diffusion Map?
and t-distributed stochastic neighborhood embedding (t-SNE?,
renamed viSNE®). t-SNE is currently the most commonly u?ﬂilgf:é: C
nique in single-cell analysis. It has been used to efficient veal
local data structure and is widely used to identify distinct cell popu-

intercluster relationships), slow computation time and inability to
meaningfully represent very large datasets®. A new algorithm, called
uniform manifold approximation and projection (UMAP) has been
recently published”:8 and is claimed to preserve as much of the local
and more of the global data structure than t-SNE, with a shorter
run time. Given the wide use of t-SNE in the analysis of flow and
mass cytometry data, as well as scRNAseq data, here we test these
claims on three well-characterized single-cell datasets®-11. We also
visually and quantitatively compare the performance of UMAP with
the widely used Barnes-Hut implementation of t-SNE!?; the heavily
optimized Fourier-interpolated t-SNE, with or without late exaggera-
tion (FIt-SNE Le. or FIt-SNE, respectively)!3; and the autoencoder
neural network scvis!4.

RESULTS
Qualitative comparison of UMAP with t-SNE
We ran UMAP and t-SNE simultaneously on a dataset covering 35
samples originating from 8 distinct human tissues enriched for T
and natural killer (NK) cells, of more than >300,000 events with 39
protein targets!! (the Wong dataset; Supplementary Table 1). Using
the Louvain clustering-based Phenograph!s algorithm and manual
cluster labeling, we classified events into six broad cell populations
(Supplementary Fig. 1a). UMAP and t-SNE were both successful at
pulling together only clusters corresponding to similar cell populations
with generally very good correspondence with Phenograph cluster-
ing (Fig. 1a and Supplementary Fig. 1b). However, t-SNE separated
cell populations into distinct clusters more commonly than UMAP,
notably splitting CD8 T cells, 3 T cells and contaminating cells (likely
including B cells) into two distinct clusters each. Nonetheless, while
cthese cells were not always segregated into completely distinct clus-
ters by UMAP, these cell populations remained similarly identifiable
in UMAP as compared to t-SNE, both techniques surpassing PCA
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Normalization



Overall goals of normalization

 Normalization is needed to ensure that observed differences in
counts (across samples, biological conditions) are indeed biological
and not due to some technical artifact (e.g. array batch, technician,

sequencing depth, etc)

 Normalization strategies must capture biases that are specific to the
technology of interest

 Many techniques exist for bulk RNA-seq

* Problem here: What is a technical replicate? How can we
differentiate technical vs biological variation?




Global-scaling normalization

* From molecules to reads

Assumption Throughout the experiment In practice
Gene-specific effect Capture and Dilution Normalized  Estimated
‘expression level’ RT fraction factor expression scaling factor
A A A A A
E(Xp) = s> 1 R T S T T X, = X /§
v v v v v
Cell-specific effect Endogenous Amplification Sequencing Raw
‘scaling factor’ MRNA content factor depth read count
4 L = === === ¥EF \ 4
- ~VU ) — B 000 B coemes P R0 Lol
Ignores gene-specific = Q% = e s == = Uncertainty in the
biases (GC content, u e == =- =- estimation of scaling
transcript length) Capture Amplification Dilution  Sequencing factors is not propagated
and RT
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Global-scaling normalization

 Developed for bulk RNA-seq experiments (mixture of 1,000-
1,000,000 cells) where gene expression is more homogeneous

 Reads per million (RPM), (or related RPKM and TPM)
Standardizes the total number of reads between samples (library-
size normalization)

* These estimates can be dominated by a handful of highly expressed
genes, and this can bias results

e Alternative approaches are the trimmed mean of M values (TMM)
and DEseq. Use a reference samples and exclude extreme values.

* No much data on how TMM and DEseq perform on scRNA-seq



Spike-in sequences and normalization

* Scaling factor normalization cannot distinguish between technical
biases and true biological variation

e Extrinsic control genes. Spike-in sequences are added to each cell
lysate at (theoretically) constant and fixed amounts.

 External RNA Control Consortium (ERCC) molecules

e Critical assumption: technical effects equally affect the intrinsic and
extrinsic genes

 Major technical challenge: Calibrating the added number of spike-in
molecules

* In practice spike-ins based normalization is not very effective



Tailored normalization strategies for scRNA-
seq

BASICS (Vallejos et al. PLoS CB 2015)
SCNorm (Bacher et al. Nat. Methods 2017)

scTransform (Hafemeister & Satija, Genome Biology 2019)
implemented in Seurat. scTransform performs (~log) transformation
and normalization at the same time.

MAST (Finak et al. Genome Biology 2015) include a normalization
factor in our differential gene expression analysis (More on this

later)



Basics of scTranform

* Inspired by methods from bulk RNA-seq (e.g. DEseq, edgeR)
* Parameters estimated by regularized Negative-Binomial regression

x” J— .
log(E(x;)) = Bo + B1logyy m, Transformation  z; = —2 s/l
> o

wij = exp (Bo; + B1, logyo m;),

2
/"Lij

Oij =4[ Kij + 5.
i

Gene i (count) Total count (over all genes) for a cell
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Batch effect correction: regression methods



Motivation

Batch effects are technical sources of variation that have been
added to the samples during handling. Example of batch variables:
lot number, technician, instrument settings, plate, etc.

More common with high throughput technologies

If not adjusted for, these batch variables can have a substantial
effects on downstream analysis.

Normalization will not always correct for batch effects. Technical
variation due to batch effects might only affect a subset of the
genes.



Adjusting for batch effects

e Two scenarios:

You have information about the batch variable
Use your batch effect as a covariate in your analysis (e.g. MAST,
Harmony)

You suspect a batch effect, but you don't know where it is coming
from

The batch effect needs to be estimated first and then corrected for,
by adding the estimated variables as co-variates



Quality control and back variability

* Look at your data!

Use a dimension reduction technique (e.g. PCA/tSNE) and plot
individual samples (i.e. cells) coloring each cell by various metadata

variable (e.g. processing time, plate, etc)

Do you see variation that can be explain by your experimental

factors?
Yes: Include them in your model
No: Try to estimate potential batch effects



Single-sell RNA- seq 4 PBMC samples

Time point: 1 2 3
I ! &

* Cells arrange themselves
by gene expression

* Different time points
overlay (processing
effects minimal)

tSNE 2
B wWN P

tSNE 1



Surrogate variable analysis

Why not use principal component analysis (PCA) to detect potential
batch effects?

Problem: Biological variation or technical variation?

Solution: Regress out all known biological/technical variation (e.g.
using a linear regression) and use PCA on residuals

Use the first k principle components as estimated batch effects
(surrogate variables)

How many surrogate variables should one use (k=1, 2, etc)?



CDR effects in single-cell RNAseqg

* Principal component anal¥5|s Ieads to cellular detection rate (CDR)
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CDR effects in 10X Genomics
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Zheng et al. (2017). “Massively Parallel
Digital Transcriptional Profiling of Single
Cells.” Nature Communications 8
(Janualrly{jlzz/lzi049.
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The cellular detection rate (CDR):

Unwanted variability
CDR = proportion of expressed gene in a cell (Finak et al. 2015)

Later described in Hicks et al. 2017

Huge source of variability, possibly confounded with treatment effects

Mixed of technical and biological (e.g. size, see Padovan-Merhar et al. 2015)

Empirical estimates (e.g. mean expression) and associated effects (i.e.
differentially expressed genes) can be inflated if not adjusted for this

CDR is highly correlated with UMI numbers

We always adjust for CDR in differential expression analysis (more on this
latter)



Batch effect correction: alignment methods



Batch correction through data alignment

* Many algorithms available:

e Seurat v3 (Butler et al. 2018), MNN (Haghverdy et al. 2018), Harmony
(Korsunsky et al. 2019), etc.

* These algorithms basically transform the original data in a way to
minimize between batch variation and retain within sample variation
(i.e. cell type variation)

* The result is a corrected expression matrix



Example: Harmony

lterate until convergence

Dataset | Cell type
000 |0 m 4
a
/
%,
XN B 2
o Wt OO
" oo
C
oe\e‘ > Mlus
o
44
e

b C C
/US /G,. C/US 1‘@/.
7 7
2 2
09\6‘ o < \}%\e‘ ‘\
S S o
. X N
c)\\)c.) /’7 C)\\)% /‘7
® o 4 /

Soft assign cells to
clusters, favoring mixed
dataset representation
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Get cluster centroids
for each dataset

Single-cell review

Get dataset correction
factors for each cluster

Move cells based on
soft cluster membership
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Tran et al. Genome Biology (2020) 21:12

https://doi.org/10.1186/5s13059-019-1850-9 G e n O m e B | O | O gy

A benchmark of batch-effect correction
methods for single-cell RNA sequencing
data

Hoa Thi Nhu Tran", Kok Siong Ang', Marion Chevrier!, Xiaomeng Zhang', Nicole Yee Shin Lee, Michelle Goh and
Jinmiao Chen’

Chebk for
updates

Abstract

Background: Large-scale single-cell transcriptomic datasets generated using different technologies contain batch-
specific systematic variations that present a challenge to batch-effect removal and data integration. With continued
growth expected in scRNA-seq data, achieving effective batch integration with available computational resources is
crucial. Here, we perform an in-depth benchmark study on available batch correction methods to determine the
most suitable method for batch-effect removal.

Results: We compare 14 methods in terms of computational runtime, the ability to handle large datasets, and
batch-effect correction efficacy while preserving cell type purity. Five scenarios are designed for the study: identical
cell types with different technologies, non-identical cell types, multiple batches, big data, and simulated data.
Performance is evaluated using four benchmarking metrics including kBET, LISI, ASW, and ARI. We also investigate
the use of batch-corrected data to study differential gene expression.

Conclusion: Based on our results, Harmony, LIGER, and Seurat 3 are the recommended methods for batch
integration. Due to its significantly shorter runtime, Harmony is recommended as the first method to try, with the
other methods as viable alternatives.

Keywords: Single-cell RNA-seq, Batch correction, Batchséffeet] lategration, Differential gene expression
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Alignment methods and statistical inference

 Correction/alignment methods should only be used for visualization
and/or clustering or cell type assighment (more on this later)

* It is not recommended to perform statistical inference on corrected

values. This could lead to poorly calibrated results due to possible
confounding of batch and biological variables

* The preferred approach is to model the uncorrected data and account
for batch variables (e.g. add these as covariates in your statistical

model) possibly conditional on cell type assignments (or clustering
results)



Experimental design and batch effects

* Is there a way to avoid batch effects altogether?
* Mavbe:

Optimize/standardize your assay to reduce variability as much as
possible

Group samples of interest (i.e. samples/conditions you wish to
compare) within the same batch (if possible)

Use controls and/or technical replicates (if feasible) that can be used
to estimate batch variability and correct for it



Why experimental design matters!

McDavid, A. et al. Modeling bi-modality improves characterization of cell cycle on gene expression in single cells. PLoS CB
(2015).
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Why experimental design matters!

NATURE BIOTECHNOLOGY | COMPUTATIONAL BIOLOGY | ANALYSIS o =
BAEEH

Computational analysis of cell-to-cell heterogeneity
in single-cell RNA-sequencing data reveals hidden
subpopulations of cells

Florian Buettner, Kedar N Natarajan, F Paolo Casale, Valentina Proserpio, Antonio
Scialdone, Fabian J Theis, Sarah A Teichmann, John C Marioni & Oliver Stegle “Ce" CyCIe va riation affects global gene
Affiliations | Contributions | Corresponding authors expression"

Nature Biotechnology 33, 155-160 (2015) | doi:10.1038/nbt.3102
Received 26 January 2014 | Accepted 05 November 2014 | Published online 19 January 2015

PDF | ¥ citation [ Reprints = 9 Rights & permissions Article metrics

Abstract

Abstract - Introduction - Results - Discussion - Methods - Accession codes - References -

Acknowledgments - Author information - Supplementary information

Recent technical developments have enabled the transcriptomes of hundreds of cells to be

assayed in an unbiased manner, opening up the possibility that new subpopulations of cells can

be found. However, the effects of potential confounding factors, such as the cell cycle, on the

heterogeneity of gene expression and therefore on the ability to robustly identify subpopulations

remain unclear. We present and validate a computational approach that uses latent variable

models to account for such hidden factors. We show that our single-cell latent variable model

(scLVM) allows the identification of otherwise undetectable subpopulations of cells that

correspond to different stages during the differentiation of naive T cells into T helper 2 cells. Our

approach can be used not only to identify cellular subpopulations but also to tease apart different 70
sources of gene expression heterogeneity in single-cell transcriptomes.



Cell-cycle variation or technical
variation?

NATURE BIOTECHNOLOGY | OPINION AND COMMENT | CORRESPONDENCE o =

The contribution of cell cycle to heterogeneity in
single-cell RNA-seq data

Andrew McDavid, Greg Finak & Raphael Gottardo

Affiliations | Corresponding author

Nature Biotechnology 34, 591-593 (2016) | doi:10.1038/nbt.3498
Published online 09 June 2016

PDF ¥ citation @[ Reprints = %, Rights & permissions Article metrics

o°
7500 10000 12500

Subject terms: Cell division - Computational models - Statistical methods

To the Editor:

Estimated cell-cycle effect

In the February 2015 issue, Buettner et al. ! reported a computational approach to estimate and .

remove latent sources of variation, such as cell cycle stage, in gene expression data on single Se q uencin g d e pt h
cells. Here we suggest that this variation is largely explained by geometric library size rather than

cell cycle stage. Furthermore, we argue that the exogenous spike-ins used by Buettner et al. ! to

adjust for technical variation in library preparation and sequencing depth may have led to poorly i I m p ro pe rnorma I |Zat| on
normalized read counts. H H
* Poor experimental design
Recently, we profiled gene expression in 930 cells targeting canonical cell cycle genes ('ranked' ° Ce I I CyC I e p h ase co nfo un d ed W|t h C 1 Ch | p
genes) and genes without known cell cycle annotation (‘'unranked' genes) across three cell lines?.
We estimated that cell cycle explained 17% of the generalized linear model deviance (analogous L4 N ore pl |Cat on

to ANOVA R2) in the typical ranked gene, and 5% in the typical unranked gene. On the basis of

these results, we concluded that cell cycle did not cause substantial variability in single-cell gene

expression. Our findings were not concordant with those reported in Buettner et al. !, and we

therefore sought to explain the discrepancies. 71
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Clustering overview

Goal: Group data points (cells) that “look similar”

Most methods are distance based, groups cells that are close together - What distance
metrics?

How many cell subsets? - Trade-off between overfitting and lack of fit
What are my cells? Most algorithms do not return a phenotype
Getting results out of a clustering algorithm is easy making sense of it harder

Usually helpful to use t-SNE plots and gene expression to visualize and label cell-
populations



Clustering scRNA-seq data

Clustering is not a new problem!
For example, lots of prior work in flow cytometry

scRNA-seq data present new challenges: High dimensionality, zero-inflation, large
datasets

Lack of ground truth and benchmark datasets



Clustering tools for scRNA-seq data

Several tools have been developed (non-exhaustive list)
Phenograph (Levine et al. Cell 2015) originally developed for CyTOF data
FlowSOM (Van Gassen et al. Cytometry A 2015) originally developed for CyTOF
data

Louvain and Leiden graph clustering (Traag et al. Sci. Rep. 2019), also
implemented in Seurat and the igraph R package

SC3 (Kiselev et al. Nat. Meth. 2017) an ensemble clustering approach
SNN-clig (Xu & Su, Bioinformatics 2015)



Graph-based clustering

Many of the algorithms listed on the previous slide are based on graph-based
clustering
These methods embed cells in a graph structure (ex: a K-nearest neighbor (KNN)

network), with edges drawn between cells with similar gene expression patterns, and
then attempts to partition this graph into highly interconnected communities.

Optimization of the modularity
Network Cluster of cells

Similari
PCs |m|ar.|ty
matrix f% i%}i
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CD8+ effector population enriched in blood at time of treatment
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Cell type annotation



Manual ceH type annotatmn

Time point: 1 2
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E 1 * Different time points
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tSNE 2

Manual cell type annotation
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pes in tumor biopsies

TILs (tumor infiltrating lymphocytes), TAMs (tumor
associated macrophages) and fibroblasts cluster
together

Tumor cells pre- and post-treatment cluster
separately

All tumor cells changed their gene-expression
profile, suggestive of intense selective pressure



tSNE 2

Cell types in tumor biopsies
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Supervised cell-type annotation

* Most cell-type annotation are supervised (or semi-supervised) in the
sense that they used either known marker genes or cell-type
signatures (derived from sorted bulk or single-cell data) to predict cell
type labels

* Can be done at the single-cell level or cluster level

* Many methods available:
* SingleR (Aran et al. Nat. Immunol. 2019)

* scPre (Alquicira-Hernandez et al. Genome Biology 2019)
* Azimuth (Hao et al. Cell 2021)



CITE-seq: RNA + arotein in single-cells
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|[dentifying major cells types with proteins
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« Abseq and CITE-seq can be analyzed just like traditional cytometry data using manual
(or automated) gating

« Define cell phenotypes using protein expression data, and then quantify RNA
expression changes for each phenotype
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Visualizing phenotypes in RNA space

labels

UMAP2

11/12/21

UMAP1
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Visualizing phenotypes in protein space

labels

UMAP2

10X Genomics 10k PBMCs from a Healthy Donor
- Gene Expression and Cell Surface Protein
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Figure 3: A multimodal atlas of human PBMC
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Weighted-nearest neighbor: combining
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Differential gene expression analysis



Bimodality (zero-inflation) in scRNA-seqg
DCs (Shalek et al. 2014)

CCL5 IRG1

Clear bimodality of expression

Threshold expression values and set the
low expression to zero

Adaptive: Gene specific thresholds
derived through density estimation

Fixed: log2(TPM+1)>1

1 | 1 | 1 | 1 |
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logcounts Expression
o &

Human Cell Atlas (Bone Marrow, 2019) MAITs (Finak et al. 2016)

Cluster condition



Expression 100-cells

/eros: real or noise?

Dataset 1
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Fluidigm Biomark profiling HIV-
specific T-cells

Dataset from McDavid et al.
(2013)

Zeros reflect true expression
values, removing them leads to
poor concordance

Need to model zeros explicitly
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Finak et al. Genome Biology (2015) 16:278

DOI 10.1186/513059-015-0844-5 Genome BIOlOgy

METHOD Open Access

MAST: a flexible statistical framework for ~ ®=
assessing transcriptional changes and
characterizing heterogeneity in single-cell

RNA sequencing data

Greg Finak'", Andrew McDavid'", Masanao Yajima'", Jingyuan Deng', Vivian Gersuk®, Alex K. Shalek®**®,
Chloe K. Slichter', Hannah W. Miller', M. Juliana McElrath', Martin Prlic’, Peter S. Linsley?
and Raphael Gottardo'”"

! Abstract

Single-cell transcriptomics reveals gene expression heterogeneity but suffers from stochastic dropout and
characteristic bimodal expression distributions in which expression is either strongly non-zero or non-detectable.
We propose a two-part, generalized linear model for such bimodal data that parameterizes both of these features.
We argue that the cellular detection rate, the fraction of genes expressed in a cell, should be adjusted for as a
source of nuisance variation. Our model provides gene set enrichment analysis tailored to single-cell data. It
provides insights into how networks of co-expressed genes evolve across an experimental treatment. MAST is
available at https://github.com/RGLab/MAST.

Keywords: Bimodality, Cellular detection rate, Co-expression, Empirical Bayes, Generalized linear model, Gene set

enrichment analysis Single-cell review

94



MAST: A unified computational framework

 Model-based Analysis for Single-cell Transcriptomics

Support for multiplexed-qPCR, NanoString, and scRNA-seq

Thresholding and filtering methodology

*  Semi-continuous model for estimation and inference

Flexible framework for modeling effects and covariates (e.g. CDR, subjects)

Gene set enrichment analysis

Finak et al. Genome Biology (2015).

R package: https://github.com/RGLab/MAST

Builds on McDavid et al. (2013) and McDavid et al. (2014)


https://github.com/RGLab/MAST

MAST performance

Among the best tools for differential expression in single-cell RNA-seq

Dal Molin, A., Baruzzo, G., Di Camillo, B., 2017. Single-Cell RNA-Sequencing: Assessment of Differential
Expression Analysis Methods. Front. Genet. 8, 62.

Jaakkola, M.K., Seyednasrollah, F., Mehmood, A., Elo, L.L., 2016. Comparison of methods to detect
differentially expressed genes between single-cell populations. Brief. Bioinform.

Soneson, C., Robinson, M.D., 2017. Bias, Robustness And Scalability In Differential Expression Analysis Of
Single-Cell RNA-Seq Data. bioRxiv.

Good false discovery rate control, good power, fast and applicable to different data types
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TILs (tumor infiltrating lymphocytes), TAMs (tumor
associated macrophages) and fibroblasts cluster
together

Tumor cells pre- and post-treatment cluster
separately

All tumor cells changed their gene-expression
profile, suggestive of intense selective pressure



Targeted approach reveals selective immune
escape post-treatment with HLA-B35 Targeted T
cells
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Unbiased approach: significant increase in HLA-E expression
Selected differentially expressed genes

Selected differentially expressed genes in MCC
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Validation patient (targeting HLA-A)

scRNAseq validation patient Tumor-specific HLA-A loss Differential HLA-A, -B
*
60 -
+
%)
©
" AR oT
umor
- o 40 +
N M - . telapse 22
. - bl R SSaES s 3z
@ TAM o7 g 23
e L “ &= 20-
Mono T cells . o
R
. 14 O i
NK HLA: A B A B
Q g

tSNE 1 “Discovery” patient ~ “Validation” patient

HLA-B restricted HLA-A restricted
PBMC (n=5870) MCPyV specific CD8s  MCPyV specific CD8s

Tumor Bx (n=5397)

100



rajectory analysis



Problem overview

Pseudotemporal ordering and inference: elucidate the regulatory mechanisms that
drive and control changes in gene expression states.

Challenge of learning temporal dynamics (e.g. state of differentiation) from static
measurements.

Reorder the cells according to their position along a differentiation path.

Several tools have been recently developed (Review in Babtie et al., 2017)

Monocle 2 (Qiu et al., 2017)
TSCAN (Ji et al., 2016)

RNA velocity (Manno et al. Nature 2018).



Trajectory analysis with Monocle

* Monocle - Trapnell et al.,, 2014 - The original Monocle paper, which introduced the
concept of pseudotime ordering for single-cell analysis

a Pseudotime is a quantitative measure of biological progression through a

Cal *60eeAns &8 process such as cell differentiation.

DO NS N OADess0” SI0Cn Fed.co Anervioen fy DAz USTonook
() ) O, O,
. E—— ..' ®
o — . —> . o . .

........ * ’ Dimensionality reduction - transforms the cell data from a high-

: £ L) . . . . . .
: 1 dimensional space into a low-dimensional one that preserves essential
- relationships between cell populations but is much easier to visualize and

el G ¢ interpret.

Expression profile of each cell as a point in a high-dimensional Euclidean
space - one dimension for each gene.

Latey zeds g typo Os=ur cid i) (ebccdubore Construction of a Minimum Spanning Tree (MST) on the cells (connects
v NS all the vertices (cells) together, without any cycles and with the minimum

DHareeria by oapronsos ® . .
sones Ty el oy W ‘ . ’ e possible total edge weight) - already used w/ flow or mass cytometry.

Silariraly wgnsses ‘~.,‘ - <
FJOONE ATITEL [, T T™ /

Find the longest path through the MST, corresponding to the longest
sequence of transcriptionally similar cells.

_ ®
G argrege cn

cusdors el e

‘ Use this sequence to produce a trajectory.
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Trajectory analysis with Monocle

Monocle - Trapnell et al., 2014 - The original Monocle paper, which introduced the
concept of pseudotime ordering for single-cell analysis

b Frodteeing D trenelystg 1“'”" -
@ - @ T ® 3T LRl L . o )
el Monocle decomposed myoblast differentiation into a two-phase
Bacireing of trajectory and isolated a branch of non-differentiating cells.
“ aseudoero The first phase of the trajectory was primarily composed of cells

collected under high-mitogen conditions (proliferating cells). Cells in the
second phase were positive for markers of muscle differentiation
(differentiating myoblasts). A tightly grouped third population of cells
branched from the trajectory near the transition between phases. These
cells lacked myogenic markers, but expressed PDGFRA and SPHKI,
suggesting that they are contaminating interstitial mesenchymal cells
and did not arise from the myoblasts.

!t

gt

New version of Monocle - Monocle 2 - applies reversed graph embedding
(RGE), a recently developed machine learning strategy, to accurately
reconstruct complex single-cell trajectories.
-2 -¥ Works on every data type (UMIs, TPM, etc.)

LSOO 2

Primary human myoblast cultured in high-serum medium. After a switch to low-
serum medium, cells were dissociated and individually captured at 24h intervals

(Oh, 24h, 48h and 72h). mRNA sequencing: C1 Fluidigm.
104



Trajectory analysis with RNA velocity
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Kinetics of transcription during human
embryonic glutamatergic neurogenesis
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Abstract

Recent years have seen a revolution in single-cell RNA-sequencing (scRNA-seq)
technologies, datasets, and analysis methods. Since 2016, the scRNA-tools database
has cataloged software tools for analyzing scRNA-seq data. With the number of tools
in the database passing 1000, we provide an update on the state of the project and
the field. This data shows the evolution of the field and a change of focus from
ordering cells on continuous trajectories to integrating multiple samples and making
use of reference datasets. We also find that open science practices reward
developers with increased recognition and help accelerate the field.

Single-cell review
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Spatial gene expression: The next frontier
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Single-cell RNA-seq
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Spatial transcriptomics
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