

Swiss Institute of Bioinformatics

2025 REVIEWS IN QUANTITATIVE BIOLOGY

- foundations for a literature review

Dr Alan Bridge, Co-Director, Swiss-Prot group, SIB

November 21st, 2025

Why review agentic AI?

High stakes, High impact

Agentic AI could reshape science from hypothesis generation to lab automation and paper writing.

The Hype Is Real

Explosion of papers, blogs, and claims that AI agents are "revolutionizing science".

But what's the evidence?

Are these claims scientifically justified or driven by hype? What is the state of the art?

Our Role as Scientists

A duty to critically evaluate performance and understand their ethical & societal impact.

We also have a vested interest in this

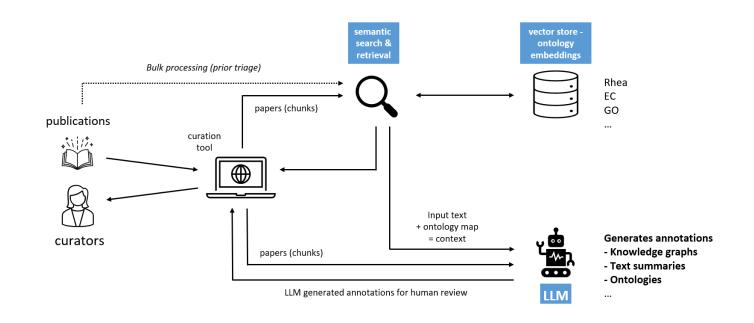
We use AI to extract knowledge from papers for the UniProt knowledgebase.

This is a human in the loop Al assisted curation workflow

- experts have editorial control
- Al performs a limited range of tasks with low autonomy

Q: Should we grant greater agency to our AI systems?

I'd like you to help me decide.



A schematic of our knowledge extraction pipeline at Swiss-Prot.

Quotes from recent papers

Agentic bioinformatics has emerged as a groundbreaking paradigm

Generative AI agents are transforming biology

Agents Achieve Superhuman Synthesis of Scientific Knowledge

What lies behind these claims?

What can agents do, and what have agents achieved?

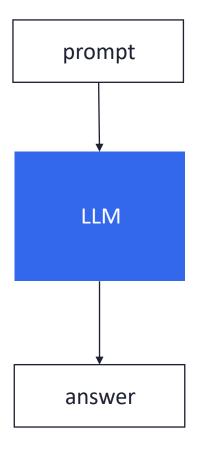
Themes to explore in this literature review

- Definitions of AI agents and Agentic AI, and relation to LLMs
- Agentic AI in biology & bioinformatics
- Evaluation and benchmarks
- Limitations of current agents
- Ethical considerations

These slides and a starting bibliography are attached to https://lab.dessimoz.org/teaching/rqb/schedule-2025

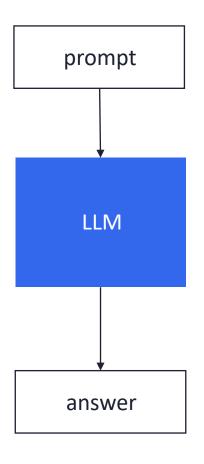
Definitions

LLM

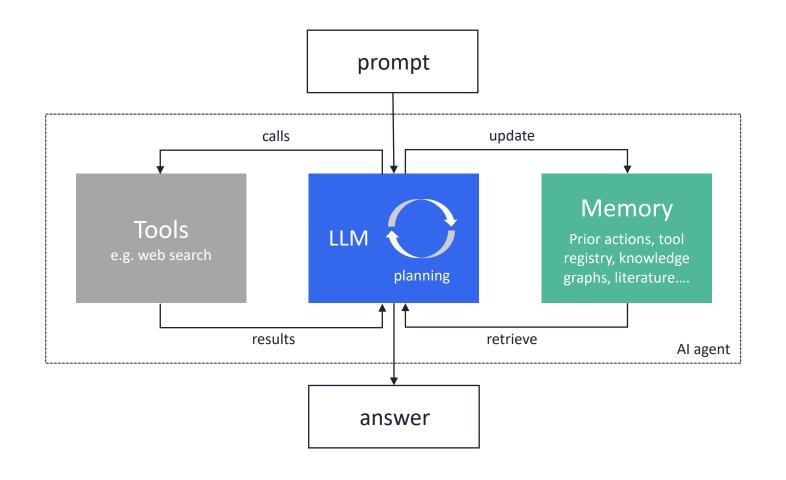


LLMs answer reflexively

LLM -> Al Agent

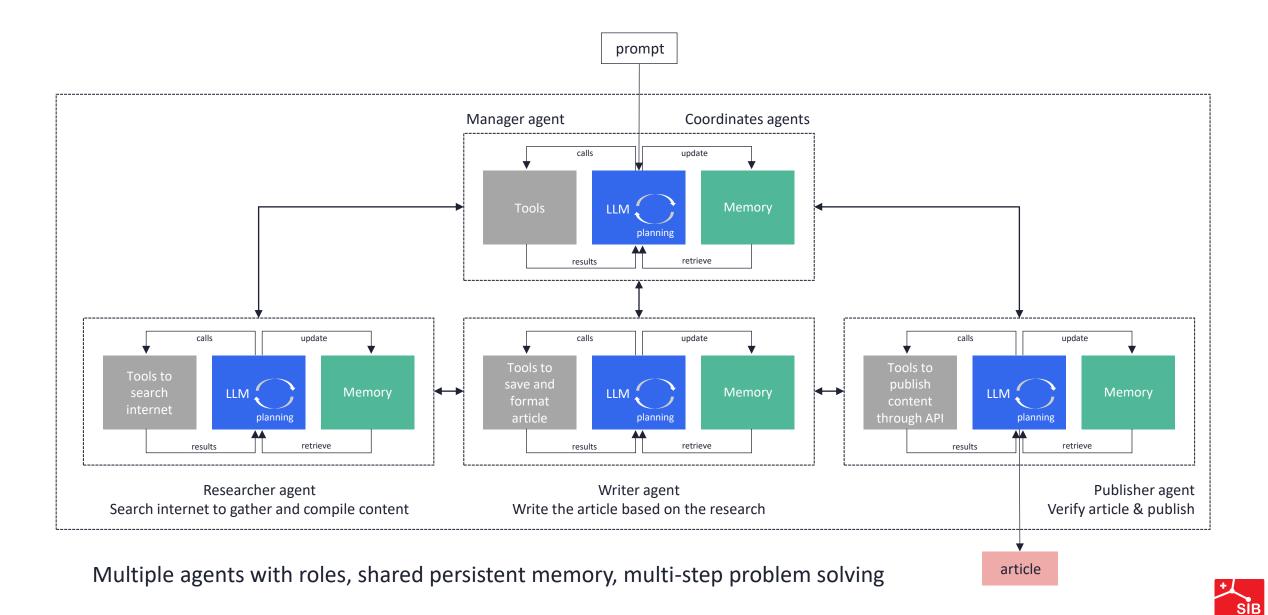


LLMs answer reflexively



Has capacity to decide what action to take. Access to tools, memory and planning.

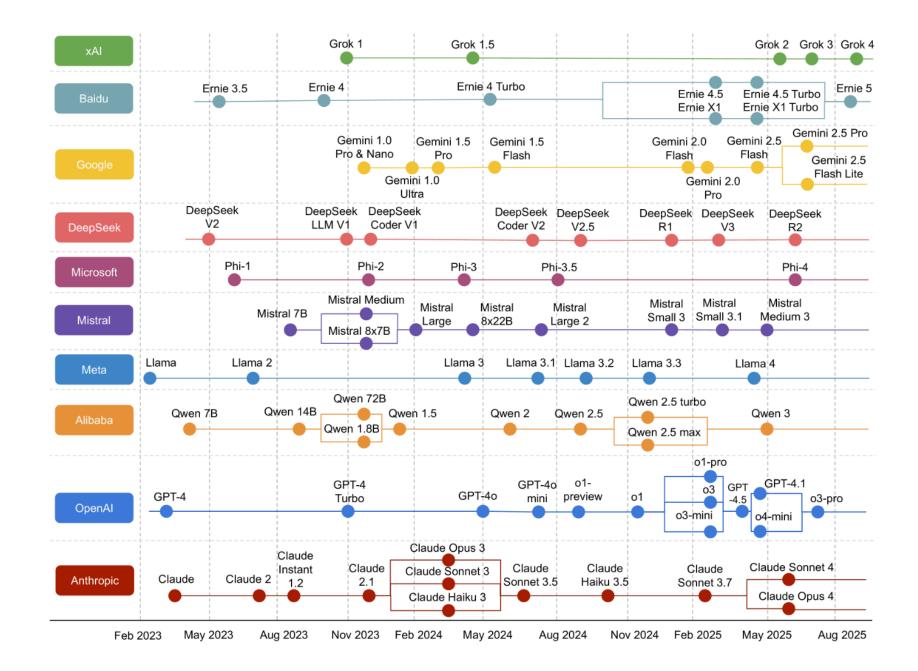
LLM -> Al Agent -> Agentic Al (sample architecture, lit review agent)



Delving into agents

Delving into agents

Some of the main LLMs to emerge since 2023

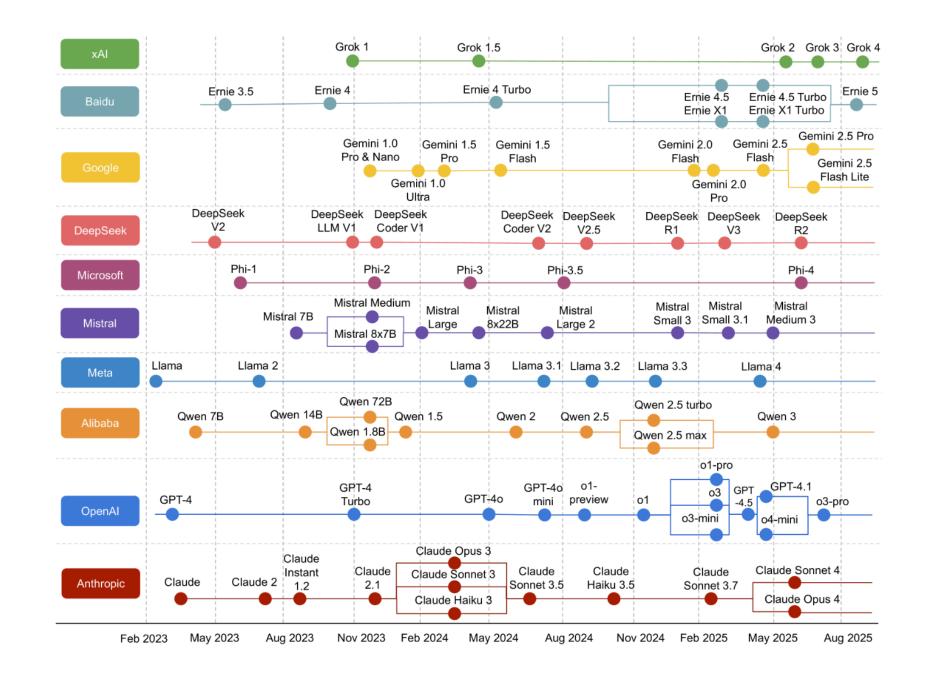


Le and Abel, 2025 arXiv:2507.18479

Some of the main LLMs to emerge since 2023

Agents use
LLMs for
reasoning
and planning
access is an
issue

Le and Abel, 2025 arXiv:2507.18479



During training, the GPT model is trained to predict the next token in a series of tokens.

The cat played in the

This is our input context

. . .

spaceship

concert

bedroom

The cat played in the garden

shed

bar

washer

. . .

Given an input context the model produces a probability distribution over the vocabulary for the next token.

spaceship concert bedroom

The cat played in the garden shed bar washer
...

Ideally the model will assign the highest probability to the actual next word in the training data.

. . .

spaceship

concert

bedroom

The cat played in the garden

shed

bar

washer

. .

Ideally the model will assign the highest probability to the actual next word in the training data.

The cat played in the garden

Ideally the model will assign the highest probability to the actual next word in the training data.

The cat played in the garden

GPT models are autoregressive, so with the token appended to the context the process continues


```
except only if

The cat played in the garden every when each unless
```

Given this new input context the model produces a new probability distribution for the next token.

except only if

The cat played in the garden every when each unless

Ideally the model will again assign the highest probability to the actual next word in the training data.

The cat played in the garden every

Creating a new context

The cat played in the garden every

Again, with this new input context the model produces a new probability distribution for the next token.

Sunday
evening
night

The cat played in the garden every day
morning
noon
Christmas

Again, with this new input context the model produces a new probability distribution for the next token.

Sunday
evening
night

The cat played in the garden every day
morning
noon
Christmas

Ideally the model will again assign the highest probability to the actual next word in the training data.

The cat played in the garden every day

The sequence is complete

GPT models can 'hallucinate', it's a feature not a bug.

The cat played in the

GPT models can 'hallucinate', it's a feature not a bug.

. . .

spaceship

concert

bedroom

The cat played in the garden

shed

bar

washer

. .

The model may select words that differ from those seen in the actual training data.

spaceship concert bedroom

The cat played in the garden shed bar washer
...

The model may select words that differ from those seen in the actual training data.

The cat played in the concert

The model may select words that differ from those seen in the actual training data.


```
as only if

The cat played in the concert on with each every ...
```

Again, with this new input context the model produces a new probability distribution for the next token.

The cat played in the concert on

A new token is appended to the context

Sunday stage bass

The cat played in the concert on drums guitar tv acid

The process continues

The cat played in the concert on drums

Ultimately creating a low probability outcome

GPTs are next token predictors

The cat played in the concert on drums

GPTs are next token predictors

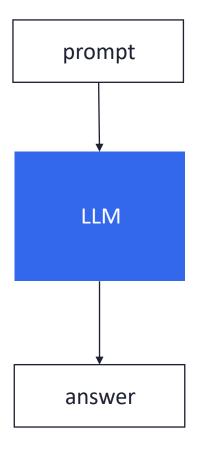
... an example of "hallucination" but also the LLM doing what it was trained to do

GPTs are next token predictors

Al Agents build on LLMs and inherit these characteristics

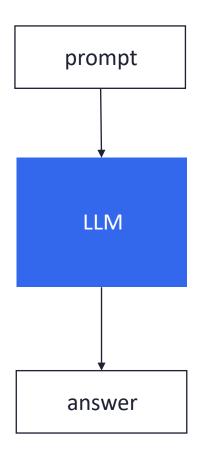
Delving into agents

LLM

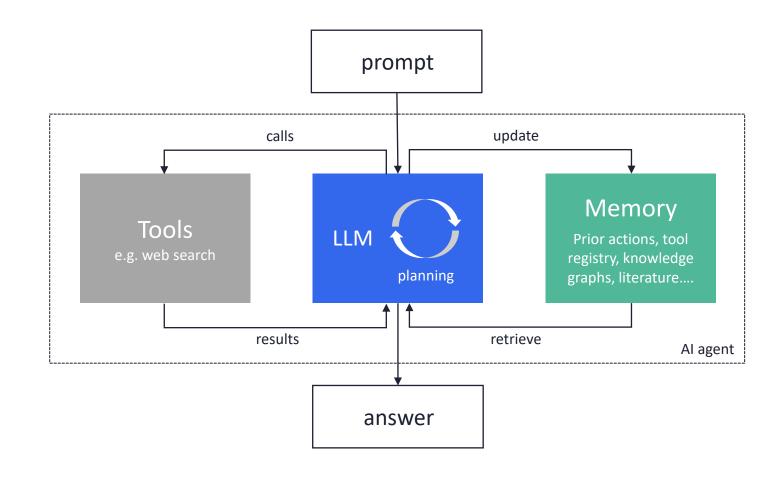


LLMs answer reflexively

LLM -> Al Agent



LLMs answer reflexively



Simple AI Agent adds tools, memory, and planning. Cycles of planning, tool use, and memory updates continue until answer found.

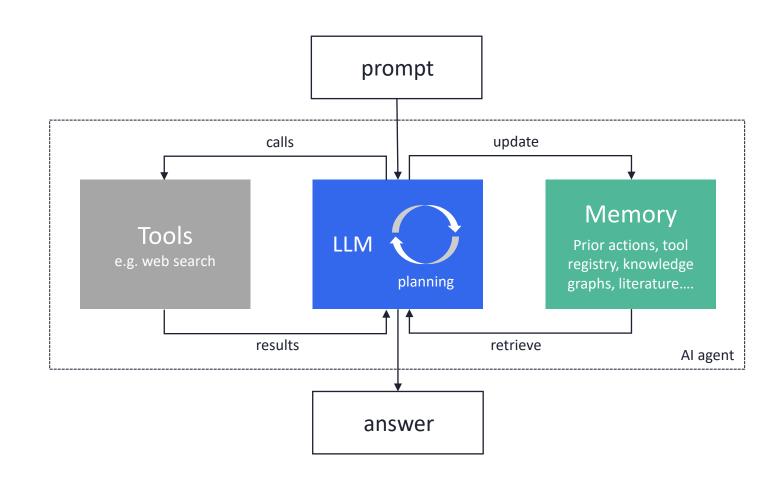
Tools

Tools allow agents to perform actions deterministically.

Examples:

- Code compiler
- Web search
- Calculator

So rather than do sums by next token prediction as an LLM, an agent would invoke a calculator.



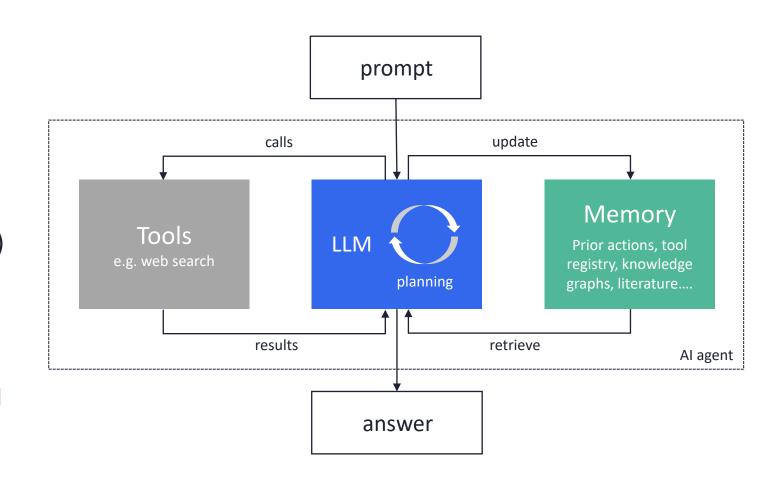
Simple AI Agent adds tools, memory, and planning. Cycles of planning, tool use, and memory updates continue until answer found.

Tools, what tools?

To tell the LLM which tools are available to it the agent framework may

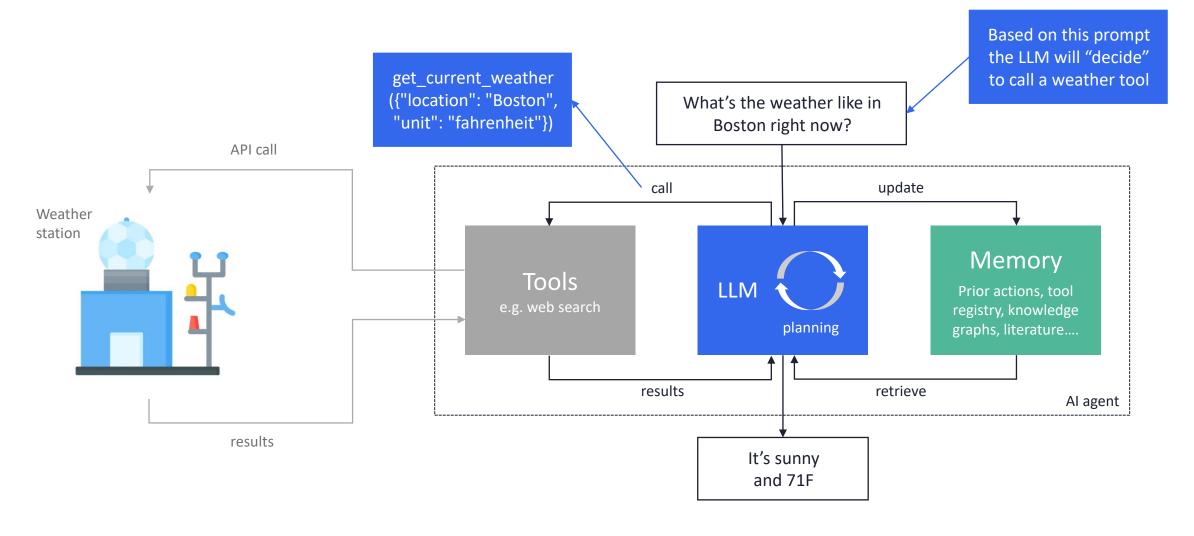
- inject the list of tools in context with the request (e.g. OpenAl API)
- include a tool registry the LLM can look up (e.g. LangChain)

Having chosen a tool, the LLM will output a function call (JSON)



Simple AI Agent adds tools, memory, and planning. Cycles of planning, tool use, and memory updates continue until answer found.

Tool use example

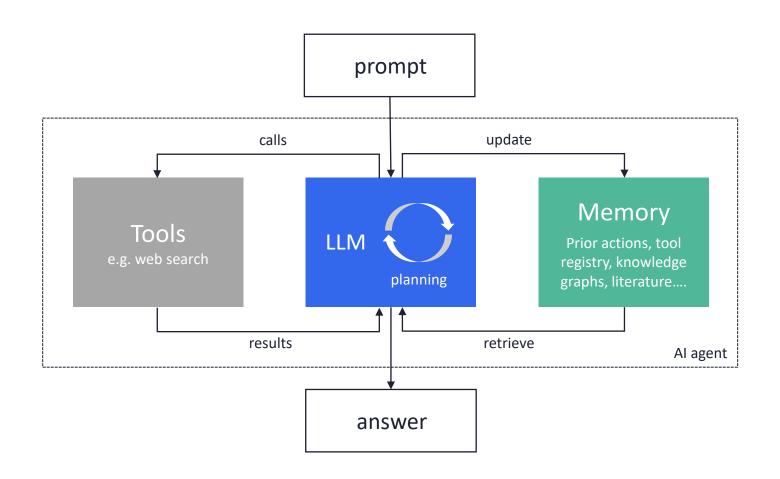


1. The LLM constructs the function call specifying the tool and parameters; 2. the tool code makes the API call and receives the results; 3. the LLM uses this to formulate the textual answer, namely "It's sunny and 71F"

Tools summary

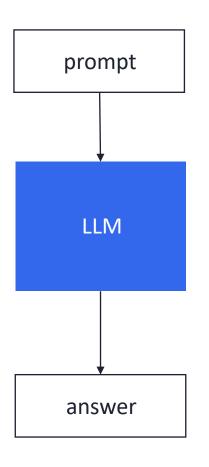
The LLM decides WHAT needs to be done

The agent application handles HOW to do it

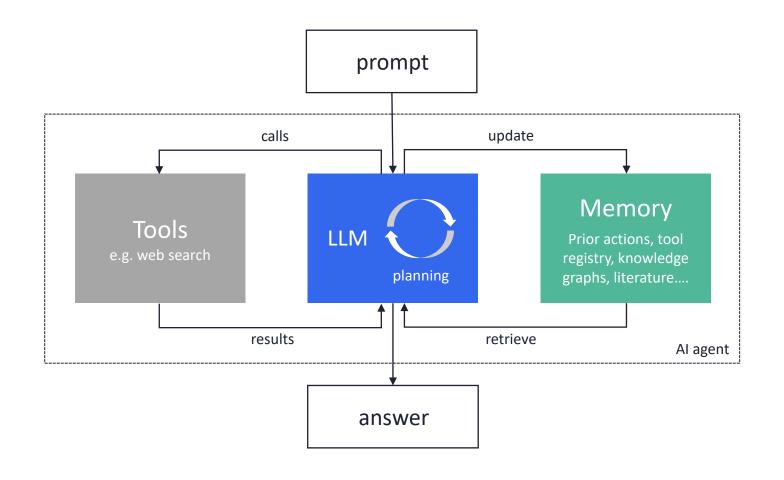


Simple AI Agent adds tools, memory, and planning. Cycles of planning, tool use, and memory updates continue until answer found.

Recap: LLM -> Al Agent

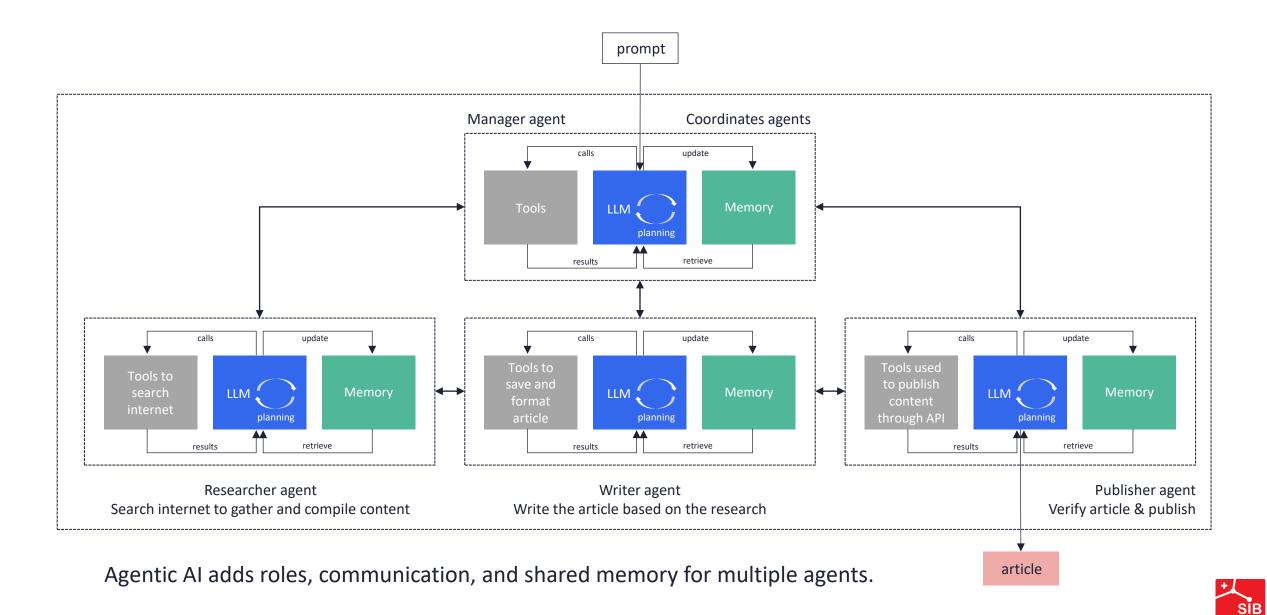


LLMs answer reflexively

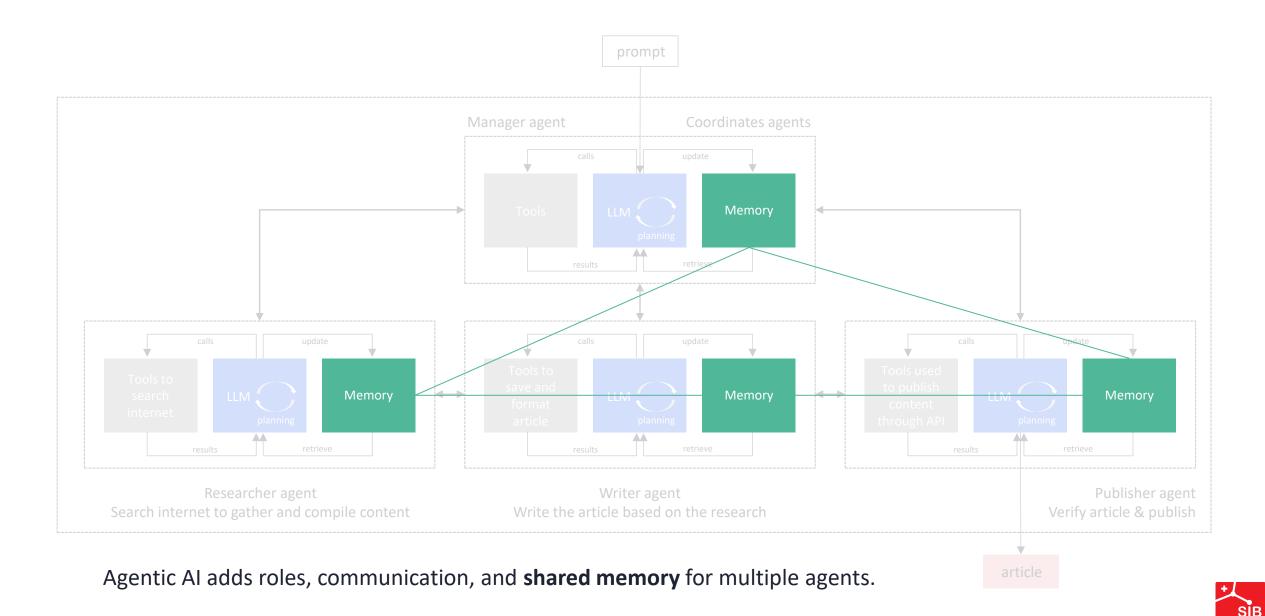


Simple AI Agent adds tools, memory, and planning. Cycles of planning, tool use, and memory updates continue until answer found.

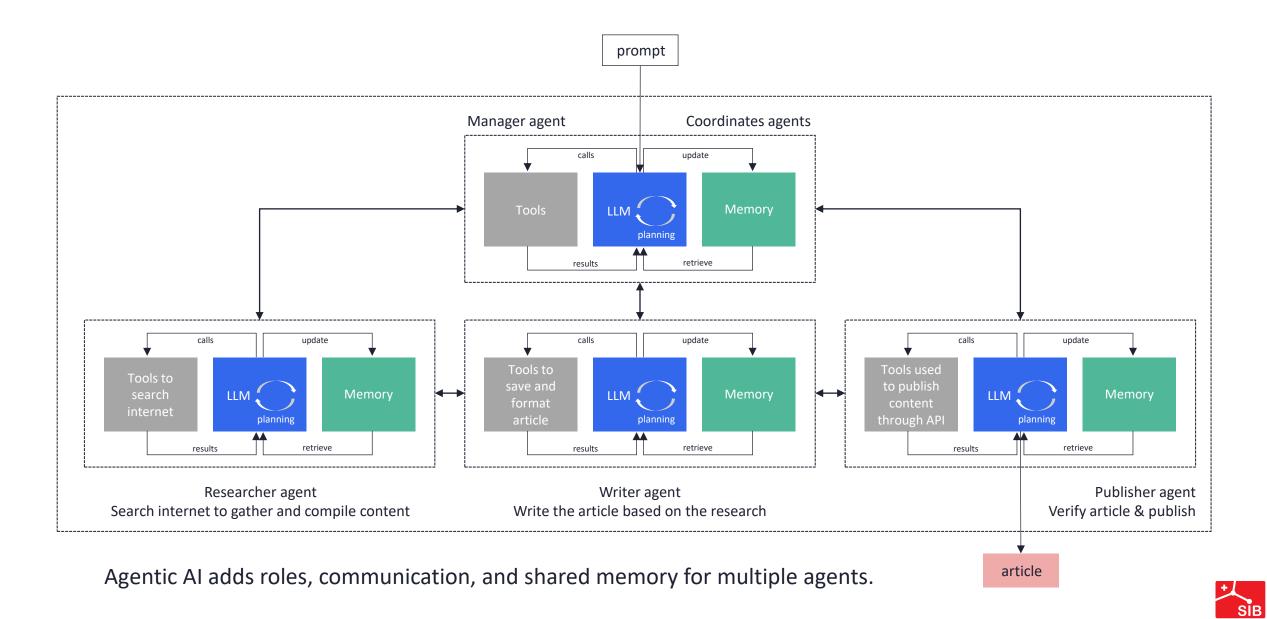
LLM -> Al Agent -> Agentic Al (sample architecture)



LLM -> Al Agent -> Agentic Al (sample architecture)



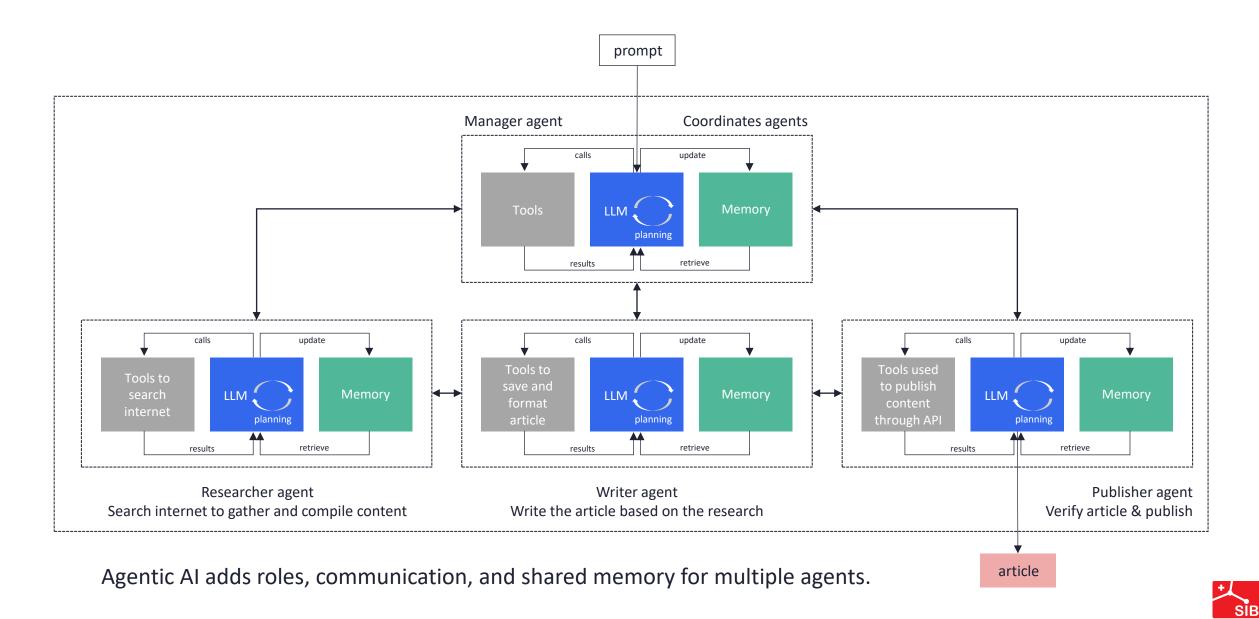
LLM -> Al Agent -> Agentic Al (sample architecture)



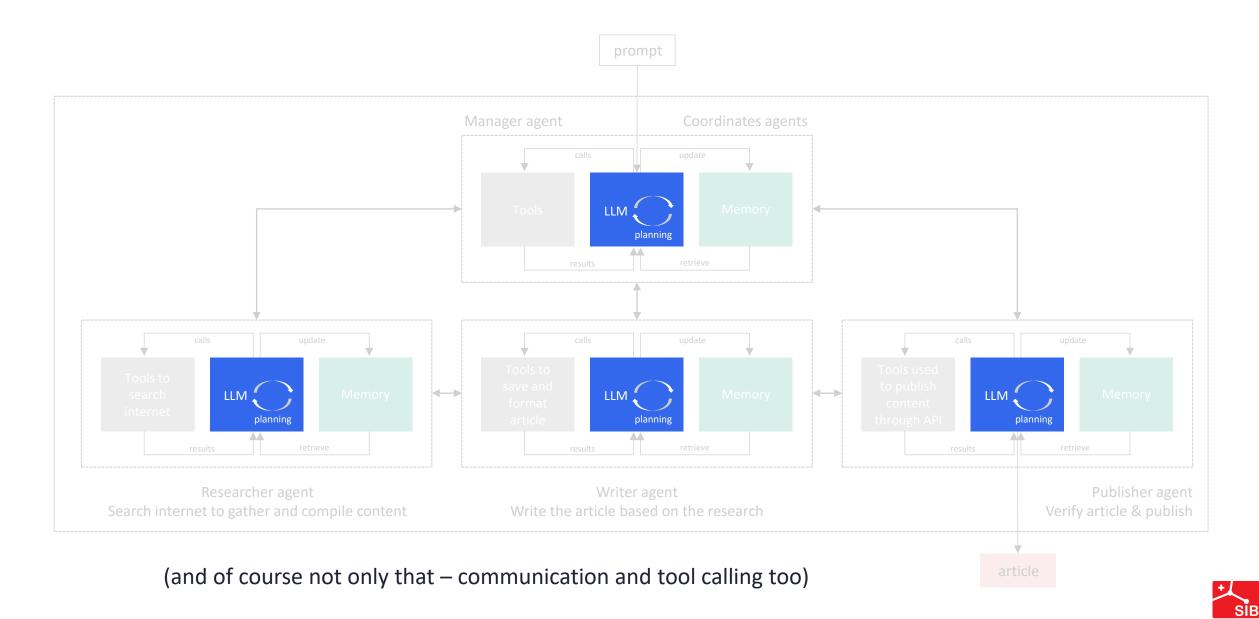
Some frameworks for agent development

Provider & Framework	Notes	Usage example
LangChain	Open-source toolkit for LLMs, provides support for agent logic, can store and recall previous tool outputs and chain tools	ChemCrow
Hugging Face smolagents	Open-source toolkit supports models from OpenAI and Anthropic; integrates tools (registry) and ReAct-style reasoning	AstaBench agents (Allen Al Institute)
OpenAl Function calling	Function calling allows model to output a JSON object calling a tool, with the list of tools passed to the LLM	ChatGPT Agent mode
Anthropic Claude 2 and Agent SDK	Model Context Protocol (MCP) standard by Anthropic defines standard protocol for tool discovery and access, including security	CrewAI framework and now LangChain

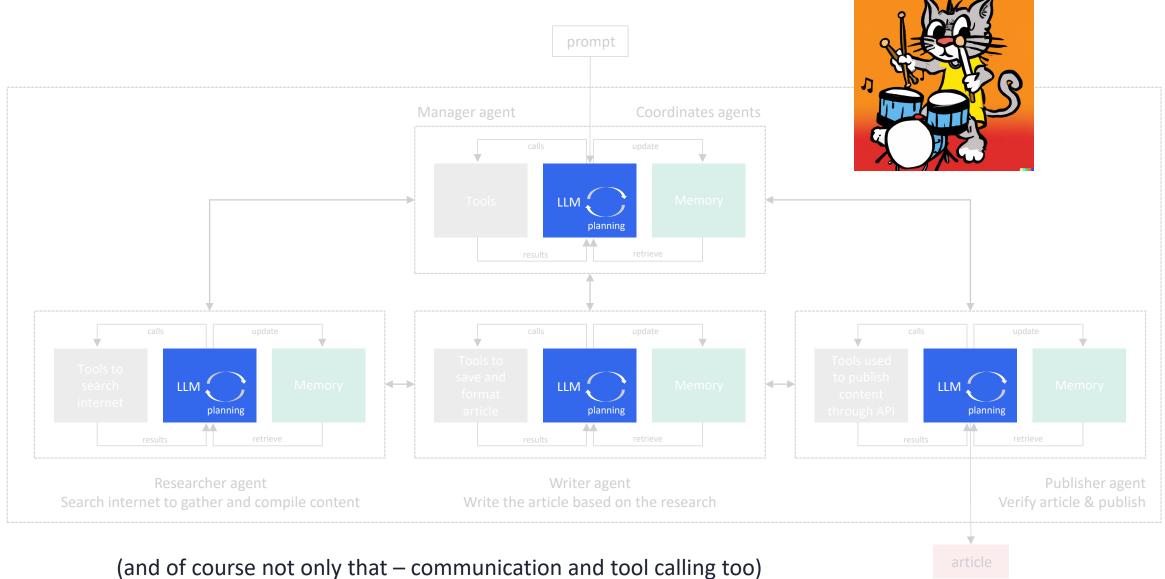
Al Agents and Agentic Al rely on LLMs for planning



Al Agents and Agentic Al rely on LLMs for planning



Al Agents and Agentic Al rely on LLMs for planning

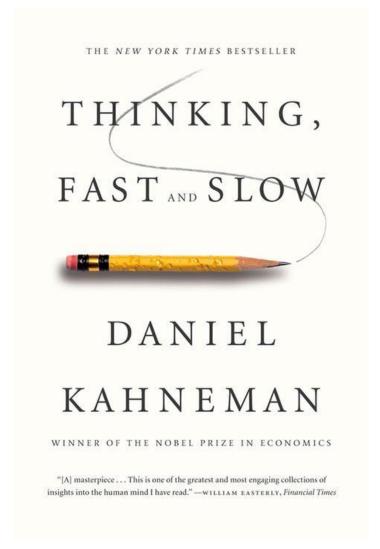


How to improve planning in Al agents?

Research suggests two modes of human decision making exist

System 1 - Fast, automatic, unconscious

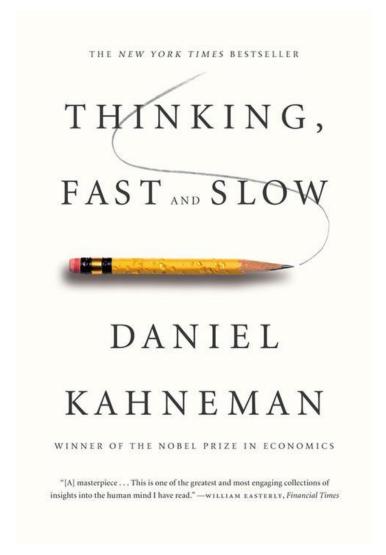
System 2 - Slow, deliberate, conscious



Research suggests two modes of human decision making exist

System 1 - Fast, automatic, unconscious
 I saw a lion approaching and ran.

System 2 - Slow, deliberate, conscious

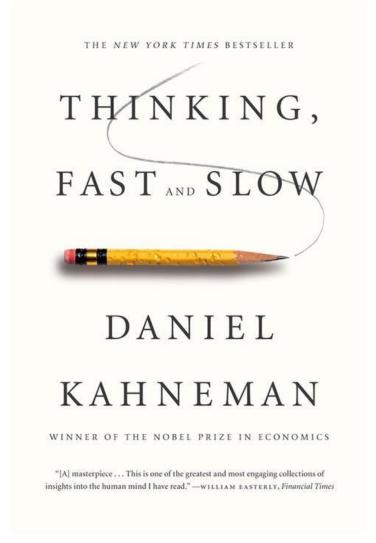


Research suggests two modes of human decision making exist

System 1 - Fast, automatic, unconscious
 I saw a lion approaching and ran.

System 2 - Slow, deliberate, conscious

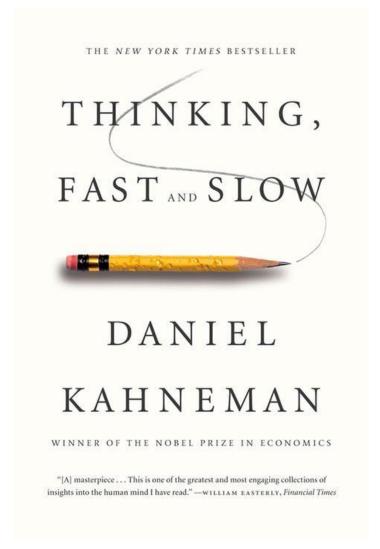
I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1. How many apples are left?



Research suggests two modes of human decision making exist

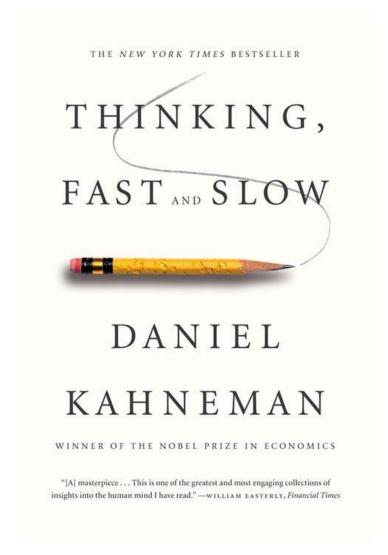
System 1 - Fast, automatic, unconscious

System 2 - Slow, deliberate, conscious



Research suggests two modes of human decision making exist

- System 1 Fast, automatic, unconscious
 LLM token choices resemble System 1
- System 2 Slow, deliberate, conscious

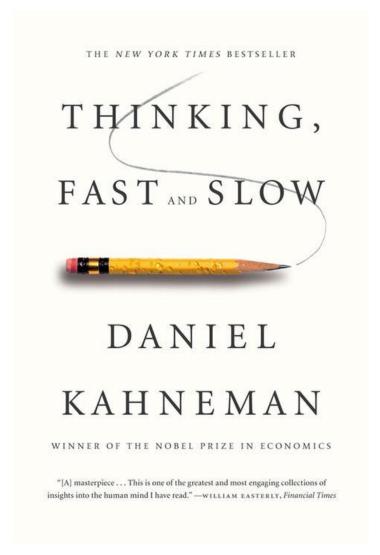


Research suggests two modes of human decision making exist

- System 1 Fast, automatic, unconscious
 LLM token choices resemble System 1
- System 2 Slow, deliberate, conscious

 Augmenting LLMs with System 2-like processes might improve their planning

 (Yao et al., arXiv:2305.10601v2)

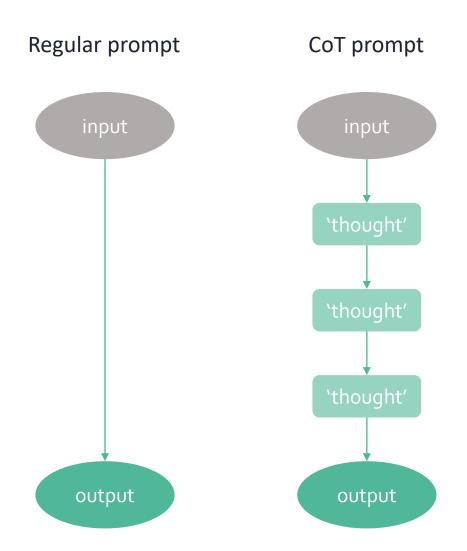


Approaches to improve LLM "reasoning"

- Prompt-based approaches to "elicit reasoning" (test time)
 - Chain of Thoughts single path exploration
 - Tree of Thoughts multi path exploration
 - Graph of Thoughts multi path exploration
 - ReAct interleaving path exploration (CoT) and tools
- Creating Large Reasoning Models (LRMs) (post training)

This is background for you. I don't expect an indepth review on progress in LLM based reasoning.

Chain of Thought prompting for LLMs



"generating a chain of thought -- a series of intermediate reasoning steps -- significantly improves the ability of large language models to perform complex reasoning."

-> Break down the problem in steps

"Chain-of-Thought Prompting Elicits Reasoning in Large Language Models"

Wei et al., 2022, Google Research

arXiv:2201.11903v6

Regular prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left?

Regular prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left?

Answer: 11 apples

Regular prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left?

Answer: 11 apples

WRONG

Regular prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left?

Answer: 11 apples

WRONG

Regular prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left?

Answer: 11 apples

WRONG

Chain of Thought prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left? Let's think step by step.

Regular prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left?

Answer: 11 apples

WRONG

Chain of Thought prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left? Let's think step by step.

First, you started with 10 apples

Regular prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left?

Answer: 11 apples

WRONG

Chain of Thought prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left? Let's think step by step.

First, you started with 10 apples

You gave away 2 apples to the neighbor and 2 to the repairman, so you had 6 apples left.

Regular prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left?

Answer: 11 apples

WRONG

Chain of Thought prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left? Let's think step by step.

First, you started with 10 apples

You gave away 2 apples to the neighbor and 2 to the repairman, so you had 6 apples left. Then you bought 5 more apples, so now you had 11 apples.

Regular prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left?

Answer: 11 apples

WRONG

Chain of Thought prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left? Let's think step by step.

First, you started with 10 apples.

ou gave away 2 apples to the neighbor and 2 to the repairman, so you had 6 apples left.

Then you bought 5 more apples, so now you had 11 apples.

Finally, you ate 1 apple, so you would have 10 apples

Chain of Thought prompting for LLMs – example

Regular prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left?

Answer: 11 apples

WRONG

Chain of Thought prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left? Let's think step by step.

First, you started with 10 apples.

You gave away 2 apples to the neighbor and 2 to the repairman, so you had 6 apples left.

Then you bought 5 more apples, so now you had 11 apples.

Finally, you ate 1 apple, so you would have 10 apples

Answer: 10 apples

Chain of Thought prompting for LLMs – example

Regular prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left?

Answer: 11 apples

WRONG

Chain of Thought prompt

I went to the market and bought ten apples. I gave 2 apples to the neighbour and 2 to the repairman. I then went and bought 5 more apples and ate 1.

How many apples do I have left? Let's think step by step.

First, you started with 10 apples

You gave away 2 apples to the neighbor and 2 to the repairman, so you had 6 apples left

Then you bought 5 more apples, so now you had 11 apples

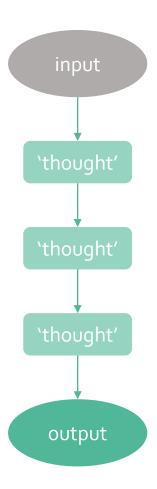
Finally, you ate 1 apple, so you would have 10 apples

Answer: 10 apples

RIGHT

From Chains to Trees of Thoughts

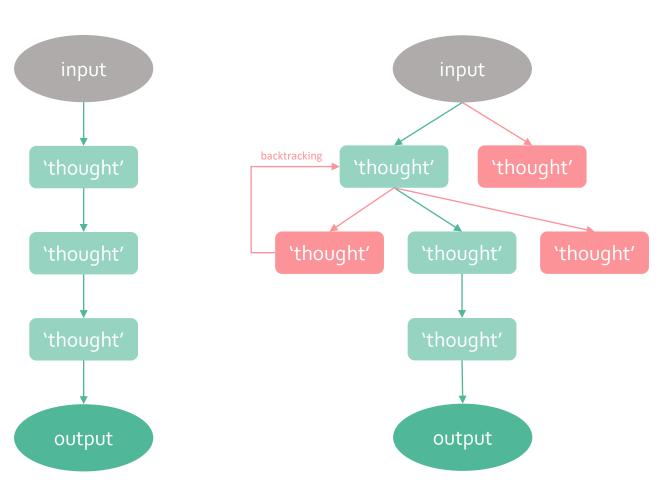
Chain of Thoughts (CoT)



From Chains to Trees of Thoughts

Chain of Thoughts (CoT)

Tree of Thoughts (ToT)



The LLM generates & evaluates multiple "thoughts" – heuristic approach seemingly characteristic of human thinking

Requires external memory and controller to store/probe paths (e.g. LangChain ToT module)

"Tree of Thoughts: Deliberate Problem Solving with Large Language Models"

Yao et al., 2023, at Google DeepMind & Princeton arXiv:2305.10601v2

Graph of Thoughts for LLMs

Generalizes Tree of Thoughts. Instead of a strict tree, reasoning is modeled as a graph, where thoughts can merge, reference, or reuse one another.

Again, this requires external memory and controller to store/probe paths (e.g. ...)

"Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Language Models"

Yao et al., 2023, at Shanghai and Wuhan

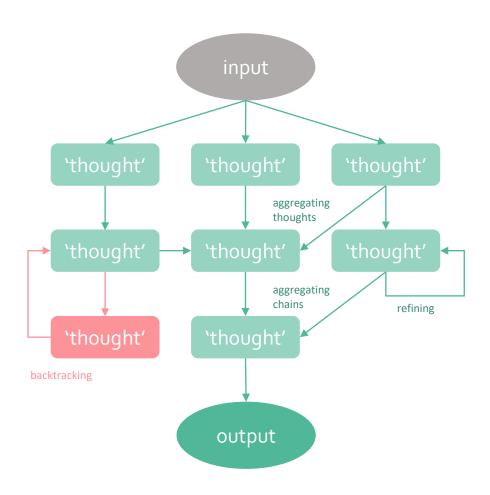
arXiv:2305.16582v2

"Graph of Thoughts: Solving Elaborate Problems with Large Language Models"

Besta et al., 2023, at ETH Zurich

arXiv:2308.09687

Graph of Thoughts (GoT)



Recap: path exploration to explicit "reasoning" in LLMs

Chain of Thoughts (CoT)

Single linear sequence
One
In-context only
Model-driven
One person thinking aloud

Structure

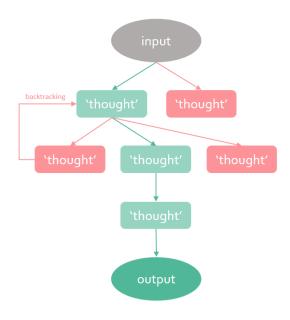
LLM calls

Memory

Control

Analogy

Tree of Thoughts (ToT)



Hierarchical branches

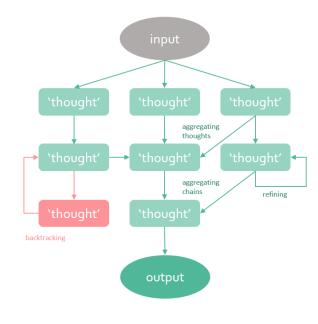
Many (branch expansions)

External tree memory

External controller (search)

Trying multiple strategies

Graph of Thoughts (GoT)



Network

Many (plus merging)

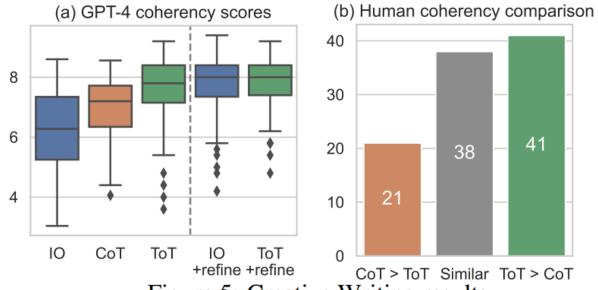
External graph memory

External controller + memory manager

Multiple people brainstorming

& combining ideas

Tree of Thoughts for LLMs – performance



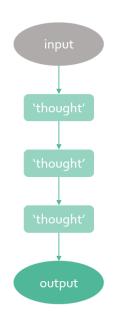
Method		ess Rat Word	
IO	38.7	14	0
CoT	40.6	15.6	1
ToT (ours)	78	60	20
+best state	82.4	67.5	35
-prune	65.4	41.5	5
-backtrack	54.6	20	5

Table 3: Mini Crosswords results.

"Tree of Thoughts: Deliberate Problem Solving with Large Language Models", Yao et al., arXiv:2305.10601v2

Recap: path exploration to elicit "reasoning" in LLMs

Chain of Thoughts (CoT)



One
In-context only
Model-driven
One person thinking aloud

Structure

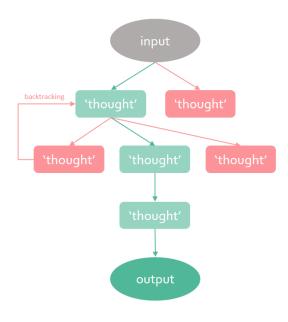
LLM calls

Memory

Control

Analogy

Tree of Thoughts (ToT)



Hierarchical branches

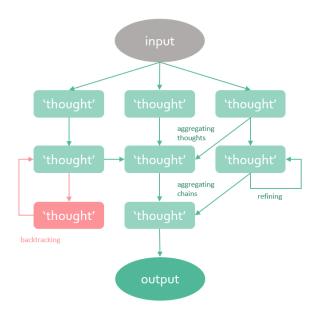
Many (branch expansions)

External tree memory

External controller (search)

Trying multiple strategies

Graph of Thoughts (GoT)



Network

Many (plus merging)

External graph memory

External controller + memory manager

Multiple people brainstorming

& combining ideas

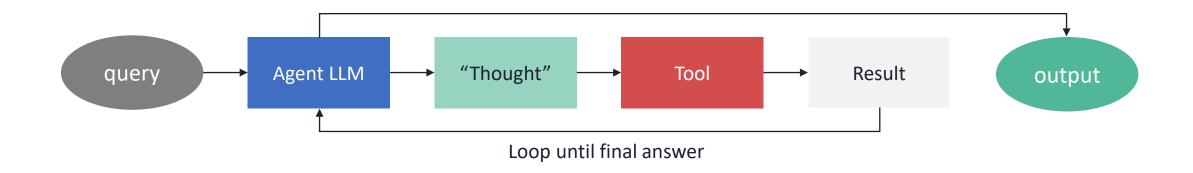
ReAct agent loops

"ReAct: Synergizing Reasoning and Acting in Language Models"

Yao *et al.*, 2022, Google Research and Princeton, arXiv:2210.03629v3

ReAct prompting guides model to

- use chain of thought reasoning
- take actions & use tools
- make observations
- loop
- output final answer



ReAct's combination of CoT with a connection to information sources reduces hallucinations

ReAct performance

ReAct improves performance and reduces hallucination as a source of failure.

Source: ReAct: Synergizing Reasoning and Acting in Language Models, Yao et al., 2022, arXiv:2210.03629

Prompt Method ^a	HotpotQA (EM)	Fever (Acc)
Standard CoT (Wei et al., 2022) CoT-SC (Wang et al., 2022a)	28.7 29.4 33.4	57.1 56.3 60.4
Act ReAct CoT-SC \rightarrow ReAct ReAct \rightarrow CoT-SC	25.7 27.4 34.2 35.1	58.9 60.9 64.6 62.0
Supervised SoTA ^b	67.5	89.5

HotPotQA is a multi-hop QA benchmark that requires reasoning over two or more Wikipedia passages. FEVER is a fact verification benchmark Wikipedia passage to verify the claim.

	Type	Definition	ReAct	СоТ
Success	True positive	Correct reasoning trace and facts	94%	86%
Success	False positive	Hallucinated reasoning trace or facts	6%	14%
	Reasoning error	Wrong reasoning trace (including failing to recover from repetitive steps)	47%	16%
Failure	Search result error	Search return empty or does not contain useful information	23%	-
Hallucination	Hallucinated reasoning trace or facts	0%	56%	
	Label ambiguity	Right prediction but did not match the label precisely	29%	28%

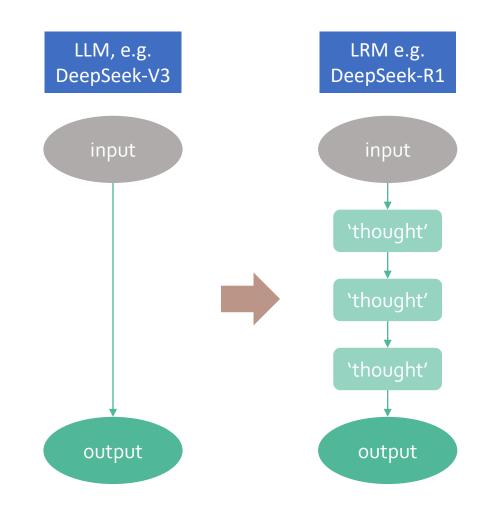
Table 2: Types of success and failure modes of ReAct and CoT on HotpotQA, as well as their percentages in randomly selected examples studied by human.

Approaches to improve LLM "reasoning"

- · Prompt-based approaches to "elicit reasoning" (test time)
 - Chain of Thoughts single path exploration
 - Tree of Thoughts multi path exploration
 - Graph of Thoughts multi path exploration
 - ReAct interleaving path exploration (CoT) and tools
- Creating Large Reasoning Models (LRMs) (post training)

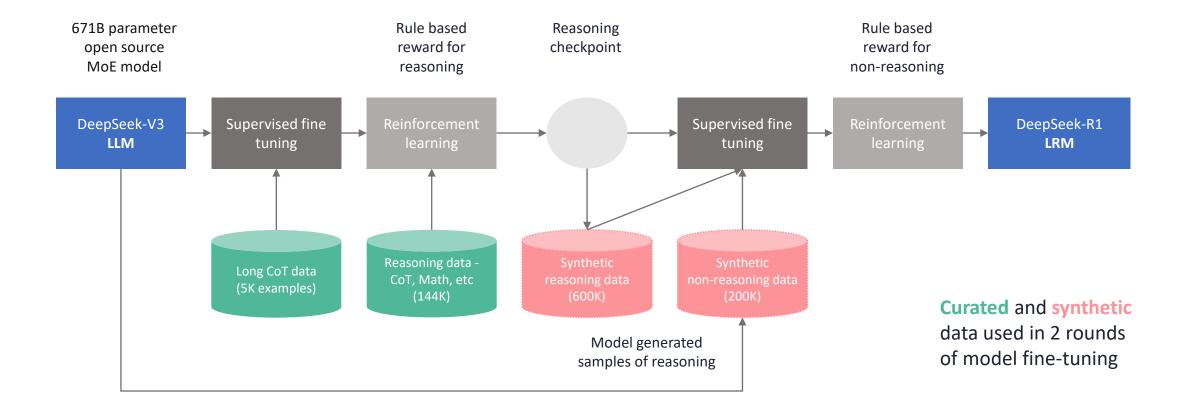
Large Reasoning Models (LRMs)

- LRMs are post-trained to break down problems into steps and "reason"
- More tokens and more compute time –
 is spent at test time inferencing
- Examples include:
 - DeepSeek R1
 - OpenAl-o1/o3
 - Google Gemini Flash 2.0 Thinking
 - Alibaba Open QwQ



Illustrate with DeepSeek-R1 – open source, for open agents, well described training process

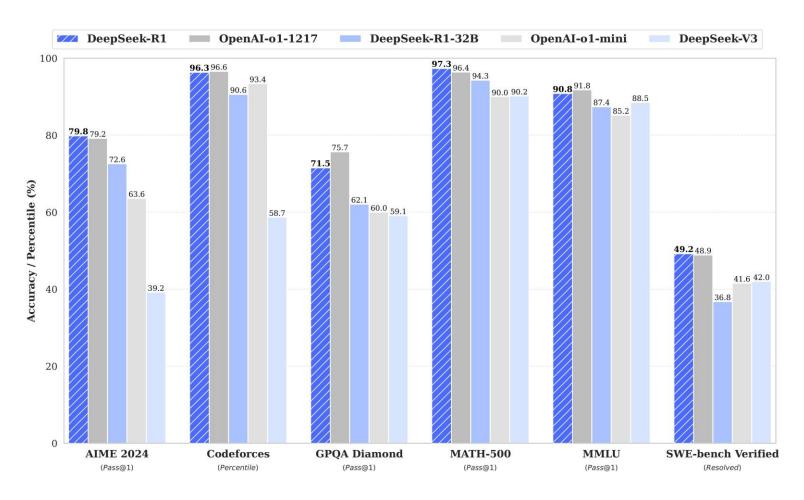
How DeepSeek-R1 was trained



DeepSeek-R1 performance

6 benchmarks with a variety of subjects and levels of reasoning:

- AIME2024 (math)
- Codeforces (prog)
- GPQA (science)
- MATH-500 (math)
- MMLU (57 subjects)
- SWE (software)



From https://huggingface.co/deepseek-ai/DeepSeek-R1

Recap: approaches to improve LLM "reasoning"

- Prompt-based approaches to "elicit reasoning" (test time)
 - Chain of Thoughts single path exploration
 - Tree of Thoughts multi path exploration
 - Graph of Thoughts multi path exploration
 - ReAct interleaving path exploration (CoT) and tools
- Creating Large Reasoning Models (LRMs) (post training)

Q: do LLMs actually reason?

Observations, FYI:

- LLM reasoning breaks down on new puzzles (out of domain)
- LLMs can arrive at correct solutions despite creating inconsistent chains of thoughts
- LLMs are trained on vast corpora of text that includes examples of people doing reasoning, so they learn to emit tokens that simulate the process of reasoning

Refs:

Survey on Enhancing Causal Reasoning Ability of Large Language Models, Li et al., arXiv:2503.09326

Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens, Zhao et al. arXiv:2508.01191v2

The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity, Shoajee et al., arXiv:2506.06941v2

Unveiling Causal Reasoning in Large Language Models: Reality or Mirage?, Chi et al. arXiv:2506.21215v1

Stop Anthropomorphizing Intermediate Tokens as Reasoning/Thinking Traces!, Kampbampati et al., arXiv:2504:09762v2

Anthropomorphizing models by claiming they reason is common in the literature.

LLMs and LRMs can effectively mimic reasoning but remain next token generators.

CoT and other approaches elicit reasoning mimicry in LLMs. Are there ways we could make agents reason deterministically?

One solution may be to remove this responsibility from the LLM. Can you find examples of this approach in your review?

Delving into agents

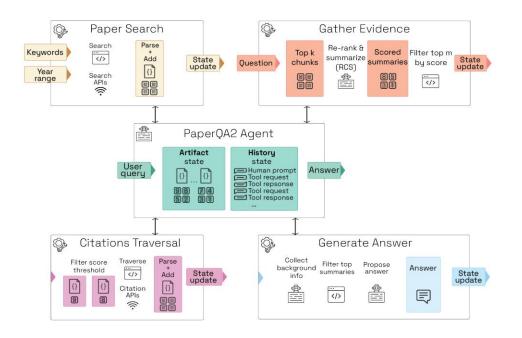
How to reconcile claims around agentic AI with demonstrated reality?

Things to look out for when reading agent papers

Autonomy	What part of the workflow is executed by humans
Iterative optimization	Whether the agent iteratively optimizes or simply executes a single workflow
Controls	Comparing multi agent vs single agent vs LLM vs scripted workflow
Robustness testing	Perturbations like changing prompts, data, LLMs, agent removal and changing roles
Experimental validation	When applicable
Failure analysis	Planning, communication, memory, tools
Code/tool availability	Is the agent reproducible/testable? Does it use proprietary models?
Benchmark suitability	If LLMs perform well it may really be testing intrinsic knowledge; data leakage may be an issue

Example 1 – PaperQA2

PaperQA2 from FutureHouse answers questions on papers and write Wikipedia style summaries



Single agent: LangChain & GPT-4 Turbo for orchestration

FutureHouse

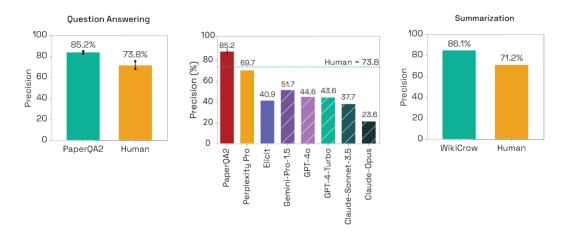
arXiv:2409.13740

LANGUAGE AGENTS ACHIEVE SUPERHUMAN SYNTHESIS OF SCIENTIFIC KNOWLEDGE

Michael D. Skarlinski¹ Sam Cox^{1,2} Jon M. Laurent¹

James D. Braza¹ Michaela Hinks¹ Michael J. Hammerling¹

Manvitha Ponnapati¹ Samuel G. Rodriques^{1,3*} Andrew D. White^{1,2*}



Curated test set: questions whose answers appear only once in the literature and never in abstracts

Autonomy	Low	Orchestrates tool calls within a narrow, pre-defined retrieval pipeline; humans
Autonomy	Low	perform environment setup and dataset and eval preparation

Autonomy	Low	Orchestrates tool calls within a narrow, pre-defined retrieval pipeline; humans perform environment setup and dataset and eval preparation
Iterative optimization	No	Agent iteratively searches the literature, and can vary order of tool calls, but there is no iterative hypothesis or workflow refinement

Autonomy	Low	Orchestrates tool calls within a narrow, pre-defined retrieval pipeline; humans perform environment setup and dataset and eval preparation
Iterative optimization	No	Agent iteratively searches the literature, and can vary order of tool calls, but there is no iterative hypothesis or workflow refinement
Controls	Yes	Agent vs LLM

Autonomy	Low	Orchestrates tool calls within a narrow, pre-defined retrieval pipeline; humans perform environment setup and dataset and eval preparation
Iterative optimization	No	Agent iteratively searches the literature, and can vary order of tool calls, but there is no iterative hypothesis or workflow refinement
Controls	Yes	Agent vs LLM
Robustness testing	No	No stress-testing, such as through prompt alterations, adversarial bibliography with a single correct answer, etc

Autonomy	Low	Orchestrates tool calls within a narrow, pre-defined retrieval pipeline; humans perform environment setup and dataset and eval preparation
Iterative optimization	No	Agent iteratively searches the literature, and can vary order of tool calls, but there is no iterative hypothesis or workflow refinement
Controls	Yes	Agent vs LLM
Robustness testing	No	No stress-testing, such as through prompt alterations, adversarial bibliography with a single correct answer, etc
Experimental validation	Yes	In this context validation is testing information retrieval from literature

Autonomy	Low	Orchestrates tool calls within a narrow, pre-defined retrieval pipeline; humans perform environment setup and dataset and eval preparation
Iterative optimization	No	Agent iteratively searches the literature, and can vary order of tool calls, but there is no iterative hypothesis or workflow refinement
Controls	Yes	Agent vs LLM
Robustness testing	No	No stress-testing, such as through prompt alterations, adversarial bibliography with a single correct answer, etc
Experimental validation	Yes	In this context validation is testing information retrieval from literature
Failure analysis	Limited	

Autonomy	Low	Orchestrates tool calls within a narrow, pre-defined retrieval pipeline; humans perform environment setup and dataset and eval preparation
Iterative optimization	No	Agent iteratively searches the literature, and can vary order of tool calls, but there is no iterative hypothesis or workflow refinement
Controls	Yes	Agent vs LLM
Robustness testing	No	No stress-testing, such as through prompt alterations, adversarial bibliography with a single correct answer, etc
Experimental validation	Yes	In this context validation is testing information retrieval from literature
Failure analysis	Limited	
Code/tool availability	Partial	Uses proprietary models like GPT-4 Turbo

Autonomy	Low	Orchestrates tool calls within a narrow, pre-defined retrieval pipeline; humans perform environment setup and dataset and eval preparation
Iterative optimization	No	Agent iteratively searches the literature, and can vary order of tool calls, but there is no iterative hypothesis or workflow refinement
Controls	Yes	Agent vs LLM
Robustness testing	No	No stress-testing, such as through prompt alterations, adversarial bibliography with a single correct answer, etc
Experimental validation	Yes	In this context validation is testing information retrieval from literature
Failure analysis	Limited	
Code/tool availability	Partial	Uses proprietary models like GPT-4 Turbo
Benchmark suitability	Partial	Curated QA pairs, with answers appearing only once and not in abstracts In QA testing, LLMs answer more than half the questions correctly

Summary: PaperQA2 shows single agents are capable of literature review and this is improved by modular prompting. How they deal with conflicting and false claims needs further testing.

Example 2 - The Virtual Lab, a multi-agent Al

nature > articles > article

Article Published: 29 July 2025

The Virtual Lab of AI agents designs new SARS-CoV-2 nanobodies

Kyle Swanson, Wesley Wu, Nash L. Bulaong, John E. Pak ♥ & James Zou ♥

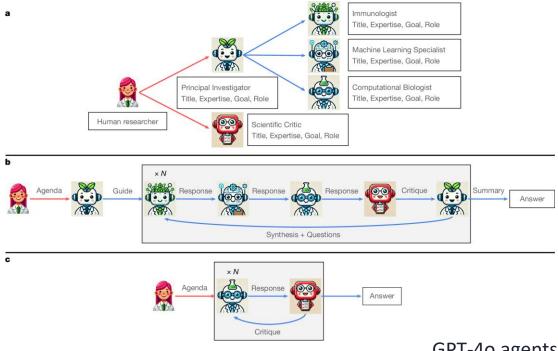
Nature **646**, 716–723 (2025) Cite this article

47k Accesses | 22 Citations | 541 Altmetric | Metrics

A multi-agent system to design nanobodies for SARS-CoV-2 KP3

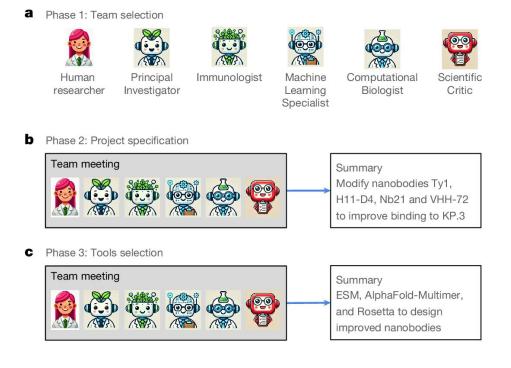
Did it succeed?

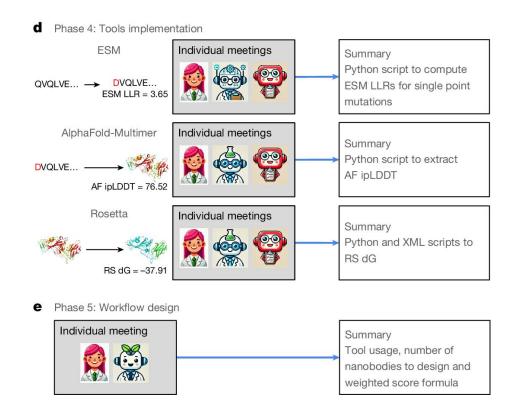
Did it do so autonomously?



GPT-40 agents

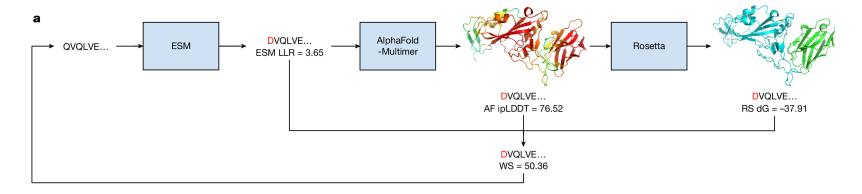
The Virtual Lab for nanobody design



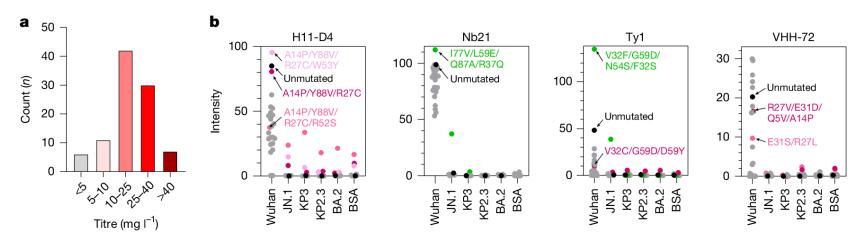


Production & validation of Virtual Lab nanobodies

Workflow suggested by Agents (fig 3)

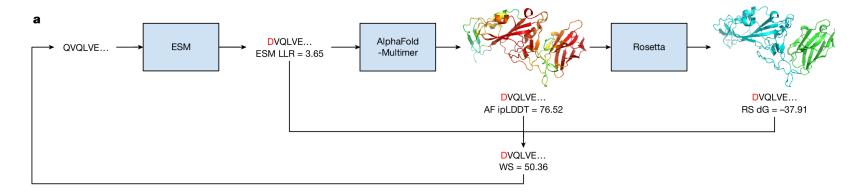


Experimental validation

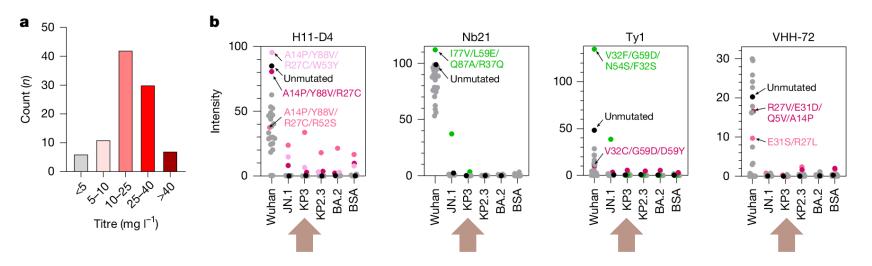


Production & validation of Virtual Lab nanobodies

Workflow suggested by Agents (fig 3)



Experimental validation



Target was SARS-CoV2-KP3, but nanobodies show increased binding only to JN.1 and Wuhan variants

Reading of the Virtual Lab

Autonomy	Low	Agents write scripts for tool calling, researcher debugs and runs them, writes standalone scripts for job scheduling, and runs experiments
----------	-----	--

Reading of the Virtual Lab

Autonomy	Low	Agents write scripts for tool calling, researcher debugs and runs them, writes standalone scripts for job scheduling, and runs experiments
Iterative optimization	No	Workflow is defined once and repeatedly executed

Autonomy	Low	Agents write scripts for tool calling, researcher debugs and runs them, writes standalone scripts for job scheduling, and runs experiments	
Iterative optimization	No	Workflow is defined once and repeatedly executed	
Controls	No multi-agent vs single agent vs LLM vs scripted workflow with experimen validation; multi agent system produces better discussions		

Autonomy	Low	Agents write scripts for tool calling, researcher debugs and runs them, writes standalone scripts for job scheduling, and runs experiments	
Iterative optimization No Workflow is defined of		Workflow is defined once and repeatedly executed	
Controls	No	No multi-agent vs single agent vs LLM vs scripted workflow with experimental validation; multi agent system produces better discussions	
Robustness testing	No	No stress-testing, such as through prompt alterations, sequence alterations	

Autonomy	Low	Agents write scripts for tool calling, researcher debugs and runs them, writes standalone scripts for job scheduling, and runs experiments	
validation; multi agent system produces better discussions		Workflow is defined once and repeatedly executed	
		No multi-agent vs single agent vs LLM vs scripted workflow with experimental validation; multi agent system produces better discussions	
		No stress-testing, such as through prompt alterations, sequence alterations	
Experimental validation	Yes	Result did not match goal; nanobodies designed for KP3 targeted JN.1 and Wuhan	

Autonomy	Low	Agents write scripts for tool calling, researcher debugs and runs them, writes standalone scripts for job scheduling, and runs experiments	
validation; multi agent system produces better discussion		Workflow is defined once and repeatedly executed	
		No multi-agent vs single agent vs LLM vs scripted workflow with experimental validation; multi agent system produces better discussions	
		No stress-testing, such as through prompt alterations, sequence alterations	
Experimental validation	Yes	Result did not match goal; nanobodies designed for KP3 targeted JN.1 and Wuhan	
Failure analysis Limited Limited, exa		Limited, examples of coding failure fixed by critic	

Autonomy	Low	Agents write scripts for tool calling, researcher debugs and runs them, writes standalone scripts for job scheduling, and runs experiments	
Iterative optimization No Workflow is defined once a		Workflow is defined once and repeatedly executed	
Controls	No multi-agent vs single agent vs LLM vs scripted workflow with experimental validation; multi agent system produces better discussions		
Robustness testing	No	No stress-testing, such as through prompt alterations, sequence alterations	
Experimental validation	Yes	Result did not match goal; nanobodies designed for KP3 targeted JN.1 and Wuhan	
Failure analysis Limite		Limited, examples of coding failure fixed by critic	
Code/tool availability	Partial	Proprietary models like GPT-4 Turbo, Rosetta needs a license, prompts and meeting agendas are missing, unlikely to reproduce	

Autonomy	Low	Agents write scripts for tool calling, researcher debugs and runs them, writes standalone scripts for job scheduling, and runs experiments	
Iterative optimization	No	Workflow is defined once and repeatedly executed	
Controls No No multi-agent vs single agent vs LLM vs scripted workflow with experiment validation; multi agent system produces better discussions		No multi-agent vs single agent vs LLM vs scripted workflow with experimental validation; multi agent system produces better discussions	
Robustness testing	ness testing No No stress-testing, such as through prompt alterations, sequence alterations		
Experimental validation Yes Result did not match goal; nanobodies designed		Result did not match goal; nanobodies designed for KP3 targeted JN.1 and Wuhan	
Failure analysis Limited Limited, examples of coding failure fixed by crit		Limited, examples of coding failure fixed by critic	
Code/tool availability Partial Proprietary models like GPT-4 Turbo, Rosetta needs a license, prompts an agendas are missing, unlikely to reproduce		Proprietary models like GPT-4 Turbo, Rosetta needs a license, prompts and meeting agendas are missing, unlikely to reproduce	
Benchmark suitability n/a No benchmarking in this paper, it's a pr		No benchmarking in this paper, it's a proof of principle	

Summary: The Virtual Lab is a planning and code-generation system, not an autonomous laboratory. Execution, troubleshooting, and all physical work remain human-driven.

Virtual Lab is an impressive agentic planning demonstration. It shows that LLM agents can design complex computational workflows and write runnable code.

However, the system is not autonomous, executes no code on its own, lacks robustness testing, and depends heavily on human oversight. Iteration is not adaptive; controls do not test agent utility against simpler baselines; failure analysis is shallow; code is incompletely available; the biological result (KP.3 binding) did not meet the stated objective.

It is a good proof-of-concept for agent-assisted workflow generation.

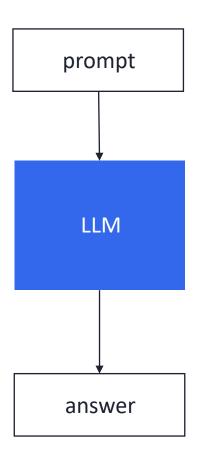
Things to look out for when reading agent papers

Autonomy	What part of the workflow is executed by humans	
Iterative optimization	Whether the agent iteratively optimizes or simply executes a single workflow	
Controls	Comparing multi agent vs single agent vs LLM vs scripted workflow	
Robustness testing	Perturbations like changing prompts, data, LLMs, agent removal and changing roles	
Experimental validation	When applicable	
Failure analysis Planning, communication, memory, tools		
Code/tool availability		
Benchmark suitability If LLMs perform well it may really be testing intrinsic knowledge; data leakage may		

LLM Benchmarks

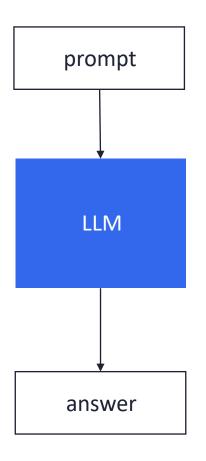
Agent Benchmarks

LLM benchmarks test intrinsic knowledge



Simple QA benchmarks test intrinsic knowledge

LLM benchmarks test intrinsic knowledge



Simple QA benchmarks test intrinsic knowledge

e.g. Massive Multitask Language Understanding (MMLU) QA

Subject: Biology

Q: What is the origin of the hyoid bone?

A: First pharyngeal arch

B: First and second pharyngeal arches

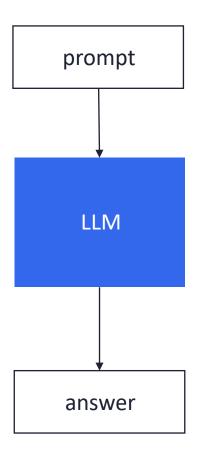
C: Second pharyngeal arch

D: Second and third pharyngeal arches

Model Output: D

Evaluation: Correct

LLM benchmarks test intrinsic knowledge



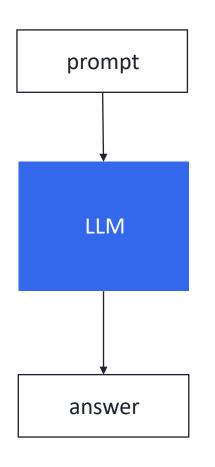
Simple QA benchmarks test intrinsic knowledge

e.g. Massive Multitask Language Understanding (MMLU) QA

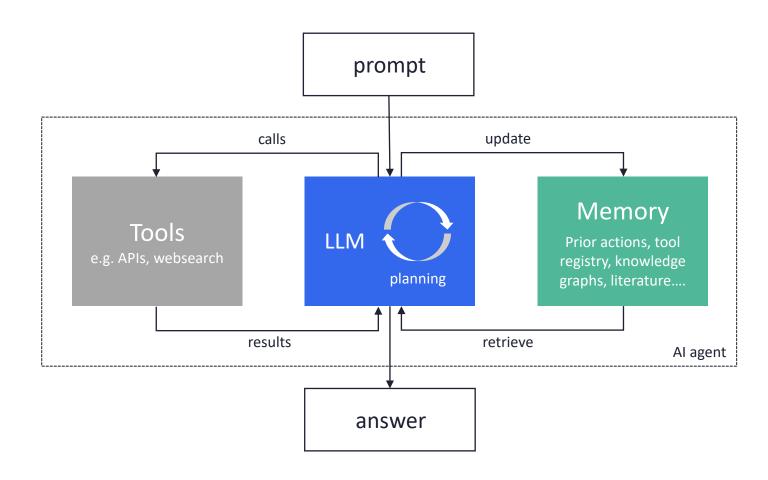
Model	MMLU All Subjects - EM
Claude 3.5 Sonnet (20241022)	0.873 ♂
DeepSeek v3	0.872 🖾
Gemini 1.5 Pro (002)	0.869 🖾
Claude 3.5 Sonnet (20240620)	0.865 ₺
Claude 3 Opus (20240229)	0.846 ₺
Llama 3.1 Instruct Turbo (405B)	0.845 ₺
GPT-4o (2024-08-06)	0.843 🖾
GPT-4o (2024-05-13)	0.842 🖾
Qwen2.5 Instruct Turbo (72B)	0.834 🖾
Gemini 1.5 Pro (001)	0.827 🖾

https://crfm.stanford.edu/helm/mmlu/latest/

Agents need different types of benchmarks



Simple QA benchmarks test intrinsic knowledge



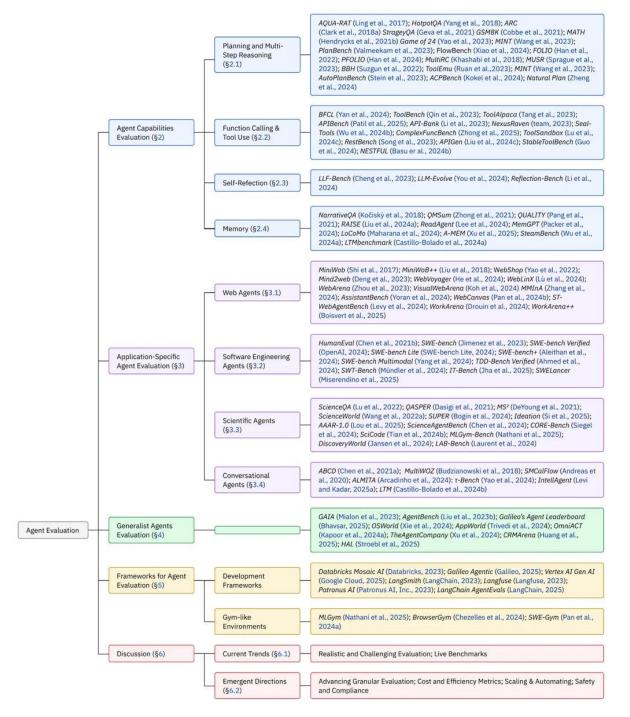
Process centric benchmarks test planning ("reasoning traces"), communication, tool use, and computational efficiency

Benchmarks for AI agents and Agentic AI

A recent review by IBM on benchmarking agents provides an overview of some of the main efforts

https://research.ibm.com/blog/Al-agent-benchmarks

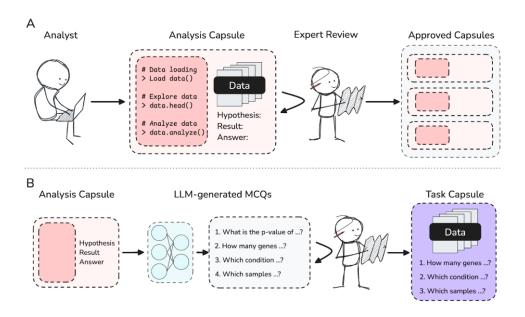
Let's look at 2 not listed...



Selected Benchmarks for AI agents and Agentic AI

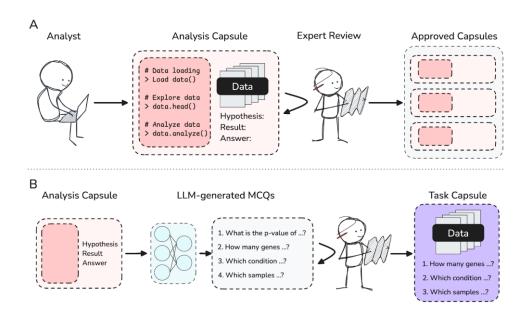
Benchmark	Comments	Reference	Developers
BixBench	61 analytical scenarios in bioinformatics with 205 open ended questions and multiple choice questions	Mitchener et al., (2025) arXiv:2503.00096 and www.futurehouse.org/research- announcements/bixbench	FutureHouse, a non-profit research lab, base San Francisco. Mission: "build semi-autonomous Als for scientific research"
AstaBench	2,400 problems where AI can help human scientists	Bragg et al., (2025) arXiv:2510.21652 and allenai.org/blog/astabench	Allen Institute for AI (AI2), a U.S. nonprofit research institute founded by Microsoft co-founder Paul Allen. Mission: "Building breakthrough AI to solve the world's biggest problems"

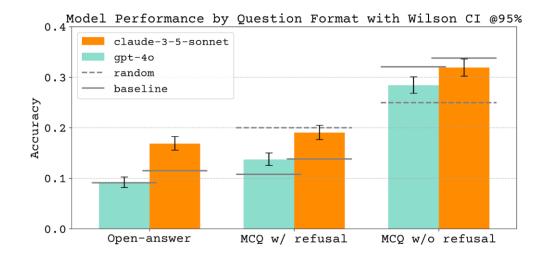
Benchmarking AI Agents on BixBench



Experts create "analysis capsules" (in Jupyter). LLMs generate questions for them (open and MCQs). Agents are given the data and hypothesis and must perform the analyses to answer the linked questions.

Benchmarking AI Agents on BixBench





Experts create "analysis capsules" (in Jupyter). LLMs generate questions for them (open and MCQs). Agents are given the data and hypothesis and must perform the analyses to answer the linked questions.

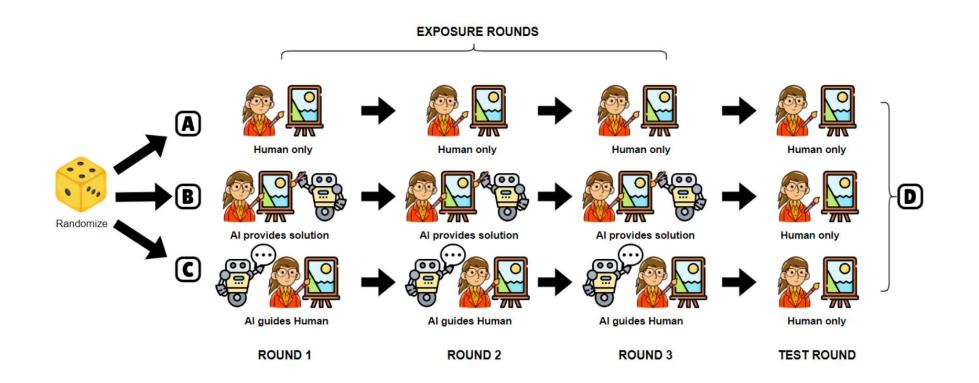
Agent performance is low for open answers and close to random for MCQs. Baseline is "pure recall" (no analysis). When allowed to refuse (center) the models often do so, particularly for complex analyses.

BixBench reveals the limitations of current LLMs in agentic bioinformatics.

Do other benchmarking studies say the same?

Delving into agents

LLM usage may impact human creativity



Teams using LLMs get a short-term boost followed by a longer-term reduction in creativity

From: Kumar et al., 2025, Human Creativity in the Age of LLMs, arXiv:2410.03703

Think about what the effects of widespread use of Agentic AI might be on scientists

LLMs may be increase the rate of false discoveries

- One unexpected consequence of the drive to create "AI-ready datasets" is the emergence of AI papermills
- PLOS journals now systematically reject papers based on the NHANES dataset without further validation
- Agentic AI and AI labs could amplify this tendency

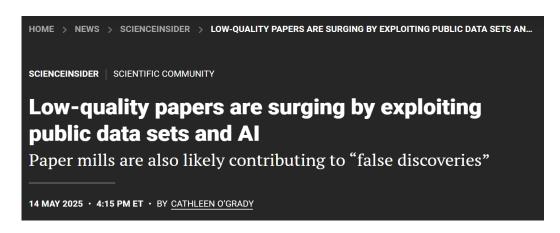
META-RESEARCH ARTICLE

Explosion of formulaic research articles, including inappropriate study designs and false discoveries, based on the NHANES US national health database

Tulsi Suchak¹, Anietie E. Aliu¹, Charlie Harrison², Reyer Zwiggelaar², Nophar Geifman¹, Matt Spick⊚¹*

1 School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom, 2 Department of Computer Science, Aberystwyth University, Ceredigion, United Kingdom

PLoS Biol 23(5): e3003152



Science, Vol 388, Issue 6749

"Dual use" of GenAl may create new threats

- Researchers repurposed a generative model using public toxicity data to generate 40,000 toxic molecules
- It recreated VX (banned since 1993)
 & many other known chemical warfare agents.
- Low alignment of Agentic AI labs could lead to creation of new pathogens or toxins, and other problems such as the release of medical data...

Dual use of artificial-intelligence-powered drug discovery

An international security conference explored how artificial intelligence (AI) technologies for drug discovery could be misused for de novo design of biochemical weapons. A thought experiment evolved into a computational proof.

Fabio Urbina, Filippa Lentzos, Cédric Invernizzi and Sean Ekins

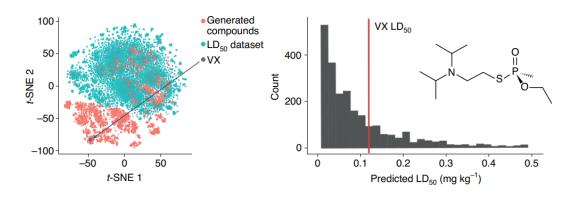


Fig. 1 | A t-SNE plot visualization of the LD_{50} dataset and top 2,000 MegaSyn Al-generated and predicted toxic molecules illustrating VX. Many of the molecules generated are predicted to be more toxic in vivo in the animal model than VX (histogram at right shows cut-off for VX LD_{50}). The 2D chemical structure of VX is shown on the right.

Urbina, F., Lentzos, F., Invernizzi, C. et al. Dual use of artificial-intelligence-powered drug discovery. *Nat Mach Intell* **4**, 189–191 (2022).

We are done!

Themes to explore in this literature review

- Definitions of AI agents and Agentic AI, and relation to LLMs
- Agentic AI in biology and/or bioinformatics
- Evaluation and benchmarking
- Limitations of current agents (e.g. in reasoning)
- Ethical considerations and risks

These slides and a starting bibliography are attached to https://lab.dessimoz.org/teaching/rqb/schedule-2025

