# perspectives and challenges for quantitative trait editing

Sebastian Soyk Center for Integrative Genomics Université de Lausanne sebastian.soyk@unil.ch https://www.unil.ch/cig/soyk

### What is a quantitative trait ?







### What is a quantitative trait ?

### seed coat color in pea



|          | <u>qualitative trait</u> |
|----------|--------------------------|
|          | discrete                 |
|          | single gene              |
| requency |                          |
|          | trait value              |

### body height in human



FIGURE 3.—A modern version of Figure 2, from Connecticut State University in 1996. The means and standard deviations in inches are as follows: males, 70.1  $\pm$  3.0; females, 64.8  $\pm$  2.7; combined, 67.6  $\pm$  4.0. Photo from LINDA STRAUSBAUGH.

<u>quantitative trait</u> continuous multiple genes (polygenic)





### What is a quantitative trait ?





## New genetic approaches for dissecting quantitative traits



## Pangenomes are available for many crop species



## Pangenomes are available for many crop species



Presence-absence variants (PAVs) in 46 distinct genomes

20

. 20

Frequency

Softcore Dispensable

# Sample

10.22%

30

. 30 Pan

Core

40

38.01%

40

Private



10

10

Core

41.42%

а

Gene Family

b

Gene Family

45,000 -40,000 -

35,000

30,000

25,000 20,000

10,000 -5,000 -

> 1,000 · 500 ·

> > 100

0

0

10.35%

# Genes and mutations that explain QTLs in crops



## diverse genomic changes underly QTLs

# Genes and mutations that explain QTLs in crops



- Natural variants often affect regulatory genes and cis-regulatory elements
- Natural variants have often only weak effects on gene activity

UNIL | Université de Lausanne Sebastian Soyk | 25.11.2022

Meyer and Purugganan, 2013

# New genetic approaches for dissecting quantitative traits



# **Genome editing using CRISPR-Cas9**





Charpentier Nobel prize 2020

Doudna

Sebastian Soyk | 25.11.2022 UNIL | Université de Lausanne

graphics from biorender.com





UNIL | Université de Lausanne Sebastian Soyk | 25.11.2022

Soyk et al, 2017

# **Editing photoperiodic flowering in tomato**



# **Editing photoperiodic flowering in tomato**



tasty fruits late flowering & fruit set large plants (indeterminate)

tasty fruits early flowering & fruit set compact plants (determinate)

cherry tomato

(Sweet-100)

sp<sup>CR</sup> sp5g<sup>CR</sup>

Sebastian Soyk | 25.11.2022 UNIL | Université de Lausanne

# Engineering quantitative traits by editing gene networks



How can gene networks be rewired ?



- Agronomic traits are often polygenic (controlled by many genes)
- Engineering single mutations fails to reconstitute full phenotypic effects

# Engineering quantitative traits by editing gene networks



Multiplexed targeting of 48 genes





(Lorenzo et al., 2022, https://doi.org/10.1101/2022.05.02.490346)

## Engineering quantitative traits by tuning gene activity

### Known single mutations with agronomic value have weak or moderate molecular effects

Hormone (GA) mutations



Hormone (florigen) mutations



### How can we engineer such mutations?



(Krieger et al., 2007; Park et al., 2014; Eshed and Lippman, 2019)

## Engineering quantitative traits by tuning gene activity



#### **Qualitative Changes**

New loss-of-function alleles into old and new crops

Generating identical alleles in elite backgrounds

Introduction of species-specific gene modifications e.g. Male sterility for hybrid seed production, Disease resistance, Allergen or toxin removal, etc.



#### **Quantitative Changes**

Generating allelic series for phenotypic selection Base edits or in-frame deletions in coding regions Interferring with RNA or protein stability Modifying *cis*-regulatory elements (activators/repressors)



## Engineering quantitative traits by base-editing protein sequences

Proof-of concept: directed evolution of herbicide resistance gene using base editing



## Engineering quantitative traits by editing cis-regulatory regions



Engineering mutations in regulatory regions allows quantitative changes in gene activity

## Genome edits can be challenging to detect

### PCR + Gel + Sanger



AGATGAACTACAATGAGTATGTGAGGCTAAAAGCTAGAGTTGAGCTCCTTCAACGTTC-TCAAAG



### Advantages

- Low cost (at low sample sizes)
- High accuracy

### Disadvantages

- Low throughput
- Mainly for homozygous edits

### NGS



### Advantages

- High throughput
- High accuracy
- Low frequency edits

### Disadvantages

- High cost (at low multiplexing level)
- Computational expertise

# Technical and computational challenges in QTL editing

### **Editing of gene networks**

- Scalability (multiple targets in many individuals)
- Sensitivity (low frequency edits)

### **Editing of cis-regulatory regions**

- Haplotypes with multiple edits across large regions
- Detection of complex haplotypes (SVs)

### **Editing of protein sequences**

- Haplotypes with multiple edits across larger regions
- Effect prediction









# NGS approaches for analysing genome editing

Long-read

(PacBio)

**Short-read** 

(Illumina)





HiPlex2 Hammet et al., 2019, Biotech

. . .

SMRT-Seq Hendel et al., 2014, Cell Rep Karst et al., 2021, Nat Method

. . .

IDM-Seq Bi et al., 2020, Genome Biol

. .



## **Computational tools to analysing genome editing events**

AmpliCan (Labun et al., 2019, Genome Research)



## **Computational tools to analysing genome editing events**

### CRISPResso (Clement et al., 2019, Nat Biotech)



### **Review on methodologies for editing quantitative traits**

What approaches are used for editing quantitative traits ?

- Rewiring gene regulatory networks
- Editing of cis-regulatory sequences
- Editing of protein coding sequences

What quantitative approaches allow the detection of genome edits ?

- short read / long read
- amplicon / whole genome
- multiplexing
- detection tools

What are the advantages and disadvantages per methodology ?

- accuracy
- scalability and costs
- limitations (complex mutations, rare edits, etc.)

Where is the field at ?

