Metagenomics and ecological networks




From a sample to an ecosystem

e Metagenomics

e Thecurrent state of the art
o Assembly
o Binning
e Extant biodiversity and the unknown

e Functional annotation
o  Structures and Al

e Finding networks and characterizing
them.

e Taking an evolutionary angle
relationships?



How do we even get this
data?



In a nutshell
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Metagenomic
Assembly

e Most approaches will use
a De Bruijn graph.

o Link all reads by the
presence of shared
KMERs

o Thereads are nodes
on a graph.

o Thefinal sequenceis
dictated by the
series of nodes the
graph passes
through.

e Metagenome-assembled
genomes (MAGS)
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Binning

e meta-assemble a sample of short
reads into contigs

®) Then Cluster Contigs based on Binning : Grouping nucleotide sequences belonging to individual/similar
. . organism/s
some criteria. o o sequence
. —— — ——
o Intheory each bin corresponds %0 Sequencng,  m e ety
to a genome. Wiétagencms (sequence) Reads Conties
e Twocriteria: KMERs and
Abundance. = e QU ~
e Time complexity remains anissue —_—— = | 2
Contigs L. s -




Co-abundance binning

e Acrossdifferent samples

e The abundance of organisms
can help group reads

e Binningthe reads and then
assembling increases
accuracy

e Still requires substantial
coverage

Metagenomics Analysis Pipeline

Metagenome

SYCH -

O ===
———
+

i 7 N

e redundant reads using
Digital Normalization

Filtered Reads Contigs

o
=~
. i
/

i

—
S »
O

Genomes occurring at varying level of
abundance in the sample

Genomes in
Population

Assemblyj N

Contig classification using
k-mers and coverage



Kmer Sp e ctra Binning Candidatus Thorarchaeota aorchaeon isolate B59_G1 BSQ_Guayl_icaffold_OOOOL whole genome

- 0.0007

- 0.0006

e Words of length kinthe DNA

e These are optimised by each
organism for its niche

e Canbeusedtogroup reads

e Herek=6,4096 possible
words of length 6
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M etap I'Ote 0 mi c S : P L A S S Protein-level assembly increases protein sequence

recovery from metagenomic samples manyfold

Martin Steinegger &, Milot Mirdita & Johannes Séding &

PY What if We don’t even Ca re about Nature Methods 16, 603-606 (2019) | Cite this article
8172 Accesses | 131 Citations | 61 Altmetric | Metrics
genomes?
e We lose synteny, intragenic
regions etc
e We gain sensitivity!
e Bag of proteins




What's out there?



Filtering is already informative

Pico-plankton Nano-plankton Micro-plankton Meso-plankton
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Extant diversity: Viruses

e |nthis Tara oceans they quantify the diversity

using entropic measures.
O

H= =) p()logp(x)

e [tvaries alongthe sampling depth and
latitude.

e Wedon't know what most of these viruses
infect or what their viral cycle is like.

e Another study: (<6% of reads matched
known viruses)

Diversity and ecological footprint of Global Ocean
RNA viruses

Guillermo Dominguez-Huerta“?>t, Ahmed A. Zayed“>31, James M. Wainaina'®, Jiarong Guo®
Funing Tian"3, Akbar Adjie Pratama®?, Benjamin Bolduc*?3, Mohamed Mohssen>*,

Olivier Zablocki?>, Eric Pelletier>®, Erwan Delage®”, Adriana Alberti>®}, Jean-Marc Aury®,
Quentin Carradec®®, Corinne da Silva®, Karine Labadie®>®, Julie Poulain®®,

Tara Oceans Coordinators§, Chris Bowler®®, Damien Eveillard®’, Lionel Guidi®®, Eric Karsenti
Jens H. Kuhn, Hiroyuki Ogata'?, Patrick Wincker>®, Alexander Culley™,

Samuel Chaffron®”’, Matthew B. Sullivan’23414*
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Eukaryotic plankton diversity in the sunlit ocean
O p en Problem ° Colomban de Vargas'-%"., Stéphane Audic'2, Nicolas Henry' 2, Johan Decelle’%", Frédéric Mahé®'.%", Ramiro Logares®...

+ See all authors and affiliations

EUkaryOte S ! Science 22 May 2015:

Vol. 348, Issue 6237, 1261605
DOI: 10.1126/science.1261605

A  ‘pico-nano’ ‘nano’ ‘micro’ ‘meso’
e Metagenomics assemblies are still 1925 ] B2opm) B0 HS0-2,0005)
Abundance (reads #)

out of reach for euka ryotes. N=~i1dmilion _ __N="135 mllion N = ~121 million N =~135 million
e Lowcoverage
o Wecan't even attribute
their rDNA!
e Many early branching species.
o Couldbe crucialin

i Richness (OTU #
understanding the ness (OTU #) . o
emergence of eukarya from ’ = . .
archaea.

[ Alv -Alveolata [l Opis - Opisthokonta [l Exc - Excavata ["]1 Rhiz - Rhizaria
[T] Stram - Stramenopila [l Arch -Archaeplastida [ ] Inc - Incerta sedis [l Amoe - Amoebozoa
[]1Una - Unassigned B Und - Undetermined [l Prok - Prokaryote



What’s in their genomes?



Functional annotation

Map to something you know...
KEGG

UniProt

eggNOG (and OMA we hope
soon)

Pfam

Transfer knowledge based on
homology... to model organisms

‘ \
Kyoto Encyclopedia of, |
Genesand Genomes |




Into the darkness of the
microbial dark matter in situ

Metagenomic dark matter activities through expression

profiles of Patescibacteria
populations

Adrien Vigneron'*, Perrine Cruaud?, Rémy Guyoneaud® and

e 25% or moreinsome cases have No s A
Detectable Homology to anything we
know. ) .

e Inthe mobile fraction/ pangenome g % Cyanobacterig |
this often reaches above 50%. % "o,

e Inthe other cases where we can map é 4000/ ‘:antctorj;yctetes.:. ::De . —
our knowledge is limited. z acteroidetesg®' ¢ 4% Alphap roteobac

A pha ‘
Chioroflexi _+%3% Gammaproteobacteria
¢

e Howdowe proceed? Ry
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Explore Resources ~ Ab:

ESM Metagenomic Atlas

e
. ESM Metagenomic
Atlas
5 An open atlas of 772 million predicted
# metagenomic protein structures
' Explore -
e
bl
.
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¥ [ Fold sequence 7 ]
L ‘ " [ Read blog post ]
s .
2 [ Read research paper 7 ]




ESM: evolutionary scale model

Form is tied to function

We can use structural information now
ESM folded the Mgnify database

We now have 600 M structures attributed
to MAGs

A MGYP000279975524

MGYP001220175542

MGYP000712274586
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RMSD:
TM s(x)re 0 39 TM-score: 0.96 TM-score: 0.47 TM score 0 94 TM-score: 0.67

c MGYP004000959047

B MGYP000936678158

Closest PDB TM-score:
0.67 (3H4R_A) 0.80 (6BYM_A)

No UniRef30 matches Closest PDB TM-score: No UniRef90 matches

Fig. 4. Example ESMFold structure predictions of g i q

RESEARCH ARTICLE | BIOLOGICAL SCIENCES | § fying 2

Biological structure and function emerge
from scaling unsupervised learning to 250
million protein sequences

Alexander Rives ® B, joshua Meler, Tom Sercu ‘3, +7 , and Rob Fergus Authors Info & Affiliations

Edited by David T. Jones, University College London, London, United Kingdom, and accepted by Editorial Board Member William H. Press
December 16, 2020 (received for review August 6, 2020)

April 5,2021 | 118 (15) 2016239118 = https://doi.org/10.1073/pnas.2016239118

Evolutionary-scale prediction of atomic-level protein
structure with a language model
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ALEXANDERRIVES (3  +5authors = Authors Info & Affiliations

SCIENCE - 16Mar2023 - Vol 379, Issue 6637 - pp.1123-1130 - DOL: 10.1126/science.ade2574



= = =Alokutznaria abata
- - -Streplomyces ambolaciens
Saccharotivix espanaonsis

Inferring function: the
Al revolution

Machine learning-based prediction of activity and
substrate specificity for OleA enzymes in the
thiolase superfamily 3

Serina L Robinson &, Megan D Smith, Jack E Richman, Kelly G Aukema,
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Synthetic Biology, Volume 5, Issue 1, 2020, ysaa004,
https://doi.org/10.1093/synbio/ysaa004
Published: 27 May 2020  Article history v
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e Oneclass of enzymes

e Theyareinterested in biosynthetic gene
clusters

e What do organisms make?

e Theywanted to assign the substrate

e Trained a machine learning model on
structural features!
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Each actor has its ecological
niche



Niche specificity:
Generalists vs specialists

e Varying
o Geographic distribution
o Functional content
o Coupling to other
organisms
e |nthiswork they explore the
spread of each niche as a
function of an organism’s
genomic/pangenomic
content

nature ecology & evolution a

Article https://doi.org/10.1038/s41559-023-02027-7

Asocialnichebreadthscorerevealsniche
range strategies of generalists and specialists

Received: 22 July 2022 F. A. Bastiaan von Meijenfeldt®'?, Paulien Hogeweg' & Bas E. Dutilh®?
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Annotated biome

* Mixed (1,000)

® Faecal (human) (1,000

o Digestive system (human) (1,000)

@ Soil (1,000)

® Sediment (marine) (1,000)

@ Marine (1,000)

© Oral (846)

@ Plants (841) (includes seagrasses and macroalgae)
® Birds (836)

® Oceanic (822)

® Human (725)

© Digestive system (mammals) (711)

o Lake (689) d
|| © Faecal (animal) (681)

© Coastal (544)

@ Rhizosphere (490)

® Intestine (mammals) (477)

© Agricultural (soil) (427)

e Faecal (mammals/digestive system) (422)
© Coral reef (395)

© Supragingival plaque (347)

0 1,000
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0 7,265
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Compendium of 530 metagenome-assembled
bacterial and archaeal genomes from the polar

One example: Arctic Ocean

Marta Royo-Llonch @7, Pablo Sanchez ', Clara Ruiz-Gonzalez', Guillem Salazar?, Carlos Pedrés-Ali6?,
Marta Sebasti; 1, Karine Labadie *, Lucas Paoli®?, Federico Ibarbalz®, Lucie Zinger®,

[ J
Benjamin Churcheward®, Tara Oceans Coordinators*, Samuel Chaffron ©¢7, Damien Eveillard ©57,
Eric K: i>78, Shinichi ©2, Patrick ker ©47, Lee Karp-Boss®, Chris Bowler ©57 and

Silvia G. Acinas ©'*
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Let’s bring it together!



Building networks:
Correlation and
anticorrelation

e Discussing different network building
approaches using co-abundance

e Methods will pick up on different
associations

e Some links are shared

Comprehensive analysis of network reconstruction approaches
based on correlation in metagenomic data

Alessandro Fuschi'?, Alessandra Merlotti'®, Thi Dong Binh Tran2, Hoan Nguyen?,
George M. Weinstock?*, Daniel Remondini!”,

1 Department of Physics and Astronomy. University of Bologna, Bologna 40127, IT.
2 The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030 USA

3 Dept. Genetics and Genome Science, University of Connecticut Health Center.
Farmington, CT 06032 USA
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Greater than the sum of
its parts: The ecological
net.

Organisms are metabolically
complementary

Predator prey / Symbiotic/
Parasitic etc

With each mag we build a genome
scale model GSM

Can we find the metabolic flux
through each organism?

This is more of an opinion piece...

From bag-of-genes to bag-of-genomes:
metabolic modelling of communities in the
era of metagenome-assembled genomes

Clémence Frioux @® &, Dipali Singh © &=, Tamas Korcsmaros P ¢ &, Falk Hildebrand b 4 o
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Type of modeling

Graph-based Network expansion Steady-state

s BASOAT )
S-(x 5\ 02)

0 .. -1

Sv=0
Voutn € ¥ < Pones

. Applications

* Inference of knowledge ~
prediction of response

Lumped
‘bag-of-genes’
* Selection of communities -

keystone species

* Synthetic design -
alteration of communities

Com;amnentalized
‘bag-of-genomes’

Level of modeling

Dynamic models

dx;
T

Bottom-up

Approach

Y.

Small-scale
experiments




An example: Viral communities

(<6% of reads matched known viruses)
These analyses resulted in (i) a unified
comparative network of viromes based on
sequence composition (Fig. 1) and (ii) a
statistical measure of the effect of

covariates (i.e., season, proximity to shore,

and depth) on the network structure
Looking at Kegg pathways

Viral encoded host genes
Summer/winter

Shallow/deep

What pathways are present in the
population in different conditions

Modeling ecological drivers in marine viral
communities using comparative
metagenomics and network analyses

Bonnie L. Hurwitz &, Anton H. Westveld, Jennifer R. Brum, and Matthew B. Sullivan & Authors Info & Affiliations

Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved June 16, 2014 (received for review October 21, 2013)

July 7, 2014 | 111(29) 10714-10719 | https://doi.org/10.1073/pnas.1319778111
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An evolutionary angle: When things emerged

Appears unexplored
so far.

When in the species
phylogeny did
trophic relationships
emerge?

I

How has gene
content changed as
a consequence?

Are pangenomic
entities evolving as a
cluster of genes
separately?
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