Challenges and potential of integrating fossil and molecular data in evolutionary analyses

Nov 15, 2019

Daniele Silvestro 2019

Gothenburg Global **Biodiversity Centre**

Macroevolutionary analyses: spe

Why are there plants adapted to brackish water in Tibet?

Woutersen et al. in prep.

Macroevolutionary analyses: speciation, extinction, and trait evolution

How do species interactions shape phenotypic evolution?

Serrano-Serrano et al. 2015 BMC Evol Biol

Floral evolution in Gesnariaceae

Macroevolutionary analyses: speciation, extinction, and trait evolution

- Time to diversify
- Speciation and extinction rates
- Dispersal and migration rates

Plant biodiversity hotspots

Barthlott et al . Erdkunde 2007

Macroevolutionary analyses: speciation, extinction, and trait evolution

Species diversification

Daniele Silvestro 2019

Extant-taxa phylogenies and the fossil record

Complete evolutionary history of a clade Reconstructed phylogeny of the extant taxa

Fossil record

Fossil-based estimates of species diversification

Daniele Silvestro 2019

Spindle diagrams from fossil counts to understand broad diversification patterns in life history

Fossil-based estimates of trait evolution

Random, gradual evolution

Sheldon 1987 Nature

Evolutionary trends

Phenotypic jumps

...meanwhile molecular phylogenetics started to take off

Theorizing the molecular clock

Daniele Silvestro 2019

Zuckerkandl and Pauling 1965 J Theor Biol

30 years of methodological, sequencing and computing progress

80s: Molecular phylogenetics gets started

First likelihood-based estimation of phylogenetic trees

Felsenstein 1981 J Mol Evol

Open source software in the 80s

estimation of evolutionary trees. This package will be supplied on request, written in standard ANSI format on a magnetic tape supplied by the recipient. It must be acknowledged that this computer program is quite slow,

90s: "Big-data" era begins

30 years of methodological, sequencing and computing progress

Thorne and Kishino 2002 Syst Biol

2000s: More realistic "relaxed" molecular clock models

Drummond et al. 2006 PLoS Biol

The era of fossils as *calibrations* (1990-2010)

Molecular clocks can only tell us the **relative age** of branching events

Time

The era of fossils as calibrations (1990-2010)

Some issues still remain...

nature plants

ARTICLES https://doi.org/10.1038/s41477-019-0421-0

Origin of angiosperms and the puzzle of the Jurassic gap

Hong-Tao Li^{1,15}, Ting-Shuang Yi^{1,15}, Lian-Ming Gao^{2,15}, Peng-Fei Ma^{1,15}, Ting Zhang^{1,15}, Jun-Bo Yang^{1,15}, Matthew A. Gitzendanner^{3,4,15}, Peter W. Fritsch⁵, Jie Cai¹, Yang Luo², Hong Wang², Michelle van der Bank⁶, Shu-Dong Zhang¹, Qing-Feng Wang¹⁰, Jian Wang⁸, Zhi-Rong Zhang¹, Chao-Nan Fu^{2,9}, Jing Yang¹, Peter M. Hollingsworth¹⁰, Mark W. Chase^{11,12}, Douglas E. Soltis^{3,4,13,14}, Pamela S. Soltis^{3,13,14*} and De-Zhu Li¹⁰,^{2,9*}

Li et al. 2019 Nature Plants

Origin of angiosperms

125 Ma vs >200 Ma

Origin of arthropods

540 Ma vs >800 Ma

Wheat and Wahlberg 2013 Syst Biol

de

s Ns

na

mius

ium

5

.

20.0

ctus pus (Pauropoda)

1

mus

(Ostracoda) charis (Mystad

(Ostracoda) (Ostracoda) entastomida)

alus

-and-o

loos

X5 X5

15

ctylus m

es íella

npa

5

a

ermaptera) thoptera) (Blattaria) hoptera) Phthiraptera)

ion

us Ira

.

grimshawi mojavensi

villistoni bersimilis bseudoobscun nanassae yakuba erecta melanogaster sevchalla

Phylogenetic comparative methods (1990-2010)

Methods to infer trait evolution and ancestral states

Brownian process: neutral stochastic evolution of a trait

Ornstein-Uhlenbeck process: stochastic evolution pulled toward an optimum

time

Phylogenetic comparative methods (1990-2010)

Methods to infer trait evolution and ancestral states

Phylogenetic Comparative Methods

Learning from trees

Luke J. Harmon

Luke Harmon https://lukejharmon.github.io/pcm/

Using dated phylogenies to infer speciation and extinction rates

The 'reconstructed' birth-death process to infer speciation and extinction rates from a phylogeny of extant taxa.

Nee et al. 1994 Phil Trans R Soc B; Barraclough & Nee 2001 TREE; Stadler 2013 J Evol Biol; Morlon 2014 Ecol Lett

Daniele Silvestro 2019

Temporal dynamics of species diversification: pure birth process

Phylogenetic tree

Time

What is the effect of extinction on an LTT plot?

What is the effect of extinction on an LTT plot?

Birth-death processes in phylogenetics

pure-birth process (no extinction)

lineages accumulate linearly through time in semi-log space

Extinction leaves a signature in the temporal distribution of node ages

older lineages are more likely to go extinct

Species diversification as a birth-death stochastic process

 λ : expected number of speciation events in 1 My per-lineage μ : expected number of extinction events in 1 My per-lineage

Daniele Silvestro 2019

Time until speciation: Exponential distribution with mean $1/\lambda$

Time until extinction: Exponential distribution with mean $1/\mu$

 λ : expected number of speciation events in 1 My per-lineage μ : expected number of extinction events in 1 My per-lineage

Daniele Silvestro 2019

Time until speciation: Exponential distribution with mean $1/\lambda$

Time until extinction: Exponential distribution with mean $1/\mu$

 λ : expected number of speciation events in 1 My per-lineage μ : expected number of extinction events in 1 My per-lineage

Time until speciation: Exponential distribution with mean $1/\lambda$

Time until extinction: Exponential distribution with mean $1/\mu$

 λ : expected number of speciation events in 1 My per-lineage μ : expected number of extinction events in 1 My per-lineage

Daniele Silvestro 2019

Time until speciation: Exponential distribution with mean $1/\lambda$

Time until extinction: Exponential distribution with mean $1/\mu$

speciation rate	λ (or <i>p</i>)	
extinction rate	µ (or <i>q</i>)	λ : e>
net diversification rate	$r = \lambda - \mu$	µ: e>
extinction fraction	<i>a</i> = μ / λ	

JOURNAL OF EVOLUTIONARY BIOLOGY CONTROL CONTR CONTR </tr

Paleobiology, 44(1), 2018, pp. 1–24 DOI: 10.1017/pab.2017.28

Detecting diversification rates in relation to preservation and tectonic history from simulated fossil records

Tara M. Smiley

xpected number of speciation events in 1 My per-lineage xpected number of extinction events in 1 My per-lineage

Estimating birth-death processes from the fossil record

Silvestro et al. 2014 Syst Biol, 2019 Paleobiology

Estimating birth-death processes from phylogenies: the reconstructed birth-death process

$$L(x;\lambda,\mu) = (s-1)!(\lambda-\mu)^{s-2} \exp\left((\lambda-\mu)\sum_{i=3}^{s} x_i\right) \times \left(1-\frac{\mu}{\lambda}\right)^s \prod_{i=2}^{s} \left((\exp(\lambda-\mu)x_i) - \frac{\mu}{\lambda}\right)^{-2}$$

Nee et al. Phil Trans Roy Soc B; Nee 2001 Evolution; Gernhard 2008 J Theor Biol

Likelihood surface plot

Speciation rate

Likelihood surface plot

Daniele Silvestro 2019

Speciation rate

The effect of missing species (can be accounted for)

Ζ

Yang & Rannala 1997 Mol Biol Evol; Stadler 2009 J Theor Biol

or Biol 30

Skyline birth-death models

Stadler 2011 PNAS; May et al. 2016 MEE 31

Birth-death models with rate variation across clades

Alfaro et al. 2009 PNAS; Rabosky et al. 2014 PLoS ONE

Birth-death models with diversity-dependence

Rabosky & Glor 2010 PNAS

Non-exhaustive list of software implementing phylogenetic BD model

Program	Main developers	Methods
TreePar (R)	T. Stadler	Speciation and extinction rates through time
RPANDA (R)	H. Morlon	Speciation and extinction rates through time
TESS (R)	S. Hoehna, B. Moore	Speciation and extinction rates through time
DDD (R)	R. Etienne	Speciation and extinction rates under diversity dependence
Medusa (R)	M. Alfaro	Speciation and extinction rates across clades
BayesRate (Python)	D. Silvestro	Speciation and extinction rates across clades
BAMM (C++, R)	D. Rabosky	Speciation and extinction rates across clades (and through time)
RevBayes (C++)	D. Hoehna, M. Landis, T. Heath, J. Huelsenbeck	Speciation and extinction rates through time, fossilized birth-death models
diversiTree (R)	R. G. Fitzjohn	Trait-dependent speciation and extinction rates

Ideally fossils and phylogenies should tell the same story

Phylogeny of extant species

Calls for integration of phylogenetic and fossil data – trait evolution

Opinion

Diversity in time and space: wanted dead and alive

Susanne A. Fritz^{1*}, Jan Schnitzler^{1,2*}, Jussi T. Eronen^{1,3*}, Christian Hof^{1*}, Katrin Böhning-Gaese^{1,2*}, and Catherine H. Graham^{1,2,4*}

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2013, 4, 699–702

EDITORIAL

Unifying fossils and phylogenies for comparative analyses of diversification and trait evolution

Graham J. Slater¹* and Luke J. Harmon^{2,3}

Evolutionary Ecology Research, 2017, 18: 187–200

Fossils matter – understanding modes and rates of trait evolution in Musteloidea (Carnivora)

Jan Schnitzler^{1,2}*, Christina Theis^{2,3}*, P. David Polly⁴ and Jussi T. Eronen^{5,6}

Integrating Paleontological and Phylogenetic Approaches to Macroevolution

Gene Hunt¹ and Graham Slater²

Calls for integration of phylogenetic and fossil data – diversification rates

Daniele Silvestro 2019

Quental and Marshall 2010 TREE

nature ecology & evolution

PUBLISHED: 23 MAY 2017 | VOLUME: 1 | ARTICLE NUMBER: 016

Five palaeobiological laws needed to understand the evolution of the living biota

Charles R. Marshall

Opinion

Diversity dynamics: molecular phylogenies need the fossil record

Tiago B. Quental and Charles R. Marshall

ORIGINAL ARTICLE

doi:10.1111/j.1558-5646.2009.00926.x

EXTINCTION RATES SHOULD NOT BE ESTIMATED FROM MOLECULAR PHYLOGENIES

Daniel L. Rabosky^{1,2,3,4}

Jeremy M. Beaulieu^{1,2} and Brian C. O'Meara³

Building phylogenetic trees with fossils (2012–today)

Combining molecular and morphological data (molecular and morphological clocks)

Ronquist et al. 2012 Syst Biol

Daniele Silvestro 2019

The fossilized birth-death process

Heath et al. 2014; Gavryushkina 2016 Syst Biol

_

-

-

-

-

Building phylogenetic trees with fossils (2012–today)

Speciation and extinction rates from phylogenies with fossils

Cantalapiedra et al. 2017 Science; Mitchell et al. 2018 Syst Biol

Inferring trait evolution from phylogenies with fossils

Daniele Silvestro 2019

Slater et al. 2012 MEE; 2017 Proc Roy Soc B; Silvestro et al. 2018 Syst Biol

Ideally fossils and phylogenies should tell the same story

Phylogeny of extant species

Why are fossil-based and phylogenetic rate estimates almost always different?

Estimated mean longevity of carnivore species

Hagen et al. 2017 Syst Biol

fossil estimate: 2.1 Myr

Maybe "integrating" fossils and phylogenies is like concatenating genes ignoring discordance among gene trees

Phylogeny of extant species

Why are fossil-based and phylogenetic rate estimates almost always different?

Fossils and phylogenies are the result of the same evolutionary history

There are no obvious theoretical flaws to explain the discrepancy

How many speciation and extinction events?

Daniele Silvestro 2019

Different species concepts and speciation modes change how we interpret speciation and extinction rates

2 speciations, 1 extinction

Bifurcation

1 speciation

Anagenetic speciation

1 speciation, 1 extinction

No events

Foote 1996 Paleobiology; Ezard et al. 2012 Biol Lett

Are fossil and phylogenetic rate estimates expected to be equal?

Increasing levels of speciation by bifurcation or anagenesis

Introducing the birth-death chrono-species model

Predicting the discrepancy between phylogenetic and fossil rate estimates

New Speciation Model Challenges Evolution, Supports Creation

AUGUST 19TH, 2019

DR. HUGH ROSS Science and Faith Brief

Daniele Silvestro 2019

Silvestro et al. 2018, Nature Comm

Introducing the birth-death chrono-species model

Rate differences are compatible with the BDC model

speciation rates extinction rates

Silvestro et al. 2018, Nature Comm

Allowing for rate variation: The BDC skyline model

For a long time paleo- and neo- evolutionary biologists have happily ignored one another

Models of trait evolution

Daniele Silvestro 2019

Rates of mammalian body size evolution

For a long time paleo- and neo- evolution

Speciation and extinction in mammalian families

Models of species speciation and extinction

Patterns of speciation rates in marine fish

Rabosky et al. 2018, Nature

Now we are seeing an increased integration between paleobiology and phylogenetics

Daniele Silvestro 2019

Do we need to re-think the integration between fossils and phylogenies?

Daniele Silvestro 2019

Thank you for listening

If you are interested in learning more about Bayesian stats

www.transmittingscience.org

daniele.silvestro@bioenv.gu.se https://github.com/dsilvestro

Daniele Silvestro 2019

Silurian coral reef in Gotland 🛤 (playing paleontologist with A. Antonelli)

UNIVERSITY OF GOTHENBURG

Gothenburg Global **Biodiversity Centre**

UNIL | Université de Lausanne

Swiss Institute of Bioinformatics

